Suppr超能文献

纤维指纹:一种基于稀疏编码池化的脑白质纤维分析的主题指纹。

Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis.

机构信息

Laboratory for Imagery, Vision and Artificial Intelligence, École de technologie supérieure, 1100 Notre-Dame W., Montreal, QC, H3C1K3, Canada.

Laboratory for Imagery, Vision and Artificial Intelligence, École de technologie supérieure, 1100 Notre-Dame W., Montreal, QC, H3C1K3, Canada.

出版信息

Neuroimage. 2017 Sep;158:242-259. doi: 10.1016/j.neuroimage.2017.06.083. Epub 2017 Jul 3.

Abstract

White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets.

摘要

使用弥散磁共振成像(dMRI)提供的信息进行白质特征研究,可以进行跨人群的推断。然而,个体之间的结构、功能和白质几何形状存在差异。在这里,我们提出了一种称为 Fiberprint 的个体指纹,用于使用纤维轨迹量化白质几何形状的个体独特性。我们通过将纤维轨迹映射到由字典定义的公共空间来学习纤维轨迹的稀疏编码表示。然后通过对每个束施加池化函数来生成个体指纹,从而提供描述特定个体白质几何形状的束状特征向量。这些特征编码了纤维轨迹的独特属性,例如它们沿突出束的密度。对来自 861 个人类连接组计划(HCP)受试者的数据进行的分析表明,基于大约 3000 条纤维轨迹的指纹可以唯一地识别来自同一个体的样本。我们还使用指纹进行双胞胎/兄弟姐妹识别,我们的观察结果与白质完整性的双胞胎数据研究一致。我们的结果表明,该方法可以有效地捕捉个体之间白质纤维几何形状的变化,使用紧凑的特征向量(维度为 50),使得该框架特别适合处理大型数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验