Suppr超能文献

利用软杰卡德指数和 3D 关键点集进行高效的成对神经影像分析。

Efficient Pairwise Neuroimage Analysis Using the Soft Jaccard Index and 3D Keypoint Sets.

出版信息

IEEE Trans Med Imaging. 2022 Apr;41(4):836-845. doi: 10.1109/TMI.2021.3123252. Epub 2022 Apr 1.

Abstract

We propose a novel pairwise distance measure between image keypoint sets, for the purpose of large-scale medical image indexing. Our measure generalizes the Jaccard index to account for soft set equivalence (SSE) between keypoint elements, via an adaptive kernel framework modeling uncertainty in keypoint appearance and geometry. A new kernel is proposed to quantify the variability of keypoint geometry in location and scale. Our distance measure may be estimated between O (N ) image pairs in [Formula: see text] operations via keypoint indexing. Experiments report the first results for the task of predicting family relationships from medical images, using 1010 T1-weighted MRI brain volumes of 434 families including monozygotic and dizygotic twins, siblings and half-siblings sharing 100%-25% of their polymorphic genes. Soft set equivalence and the keypoint geometry kernel improve upon standard hard set equivalence (HSE) and appearance kernels alone in predicting family relationships. Monozygotic twin identification is near 100%, and three subjects with uncertain genotyping are automatically paired with their self-reported families, the first reported practical application of image-based family identification. Our distance measure can also be used to predict group categories, sex is predicted with an AUC = 0.97. Software is provided for efficient fine-grained curation of large, generic image datasets.

摘要

我们提出了一种新的图像关键点集之间的成对距离度量方法,用于大规模医学图像索引。我们的度量方法通过自适应核框架来推广杰卡德指数,以考虑关键点元素之间的软集合等价(SSE),通过该框架可以对关键点外观和几何形状的不确定性进行建模。我们提出了一种新的核函数来量化关键点几何形状在位置和尺度上的可变性。我们的距离度量方法可以通过关键点索引在[Formula: see text]操作中估计 O(N)对图像对之间的距离。实验报告了首次使用来自 434 个家庭的 1010 个 T1 加权 MRI 脑体积的任务,包括同卵双胞胎和异卵双胞胎、兄弟姐妹和共享 100%-25%多态性基因的半兄弟姐妹,来预测家族关系的结果。软集合等价和关键点几何形状核函数在预测家族关系方面优于标准的硬集合等价(HSE)和外观核函数。同卵双胞胎的识别率接近 100%,并且有 3 名基因分型不确定的受试者被自动与其自述的家庭配对,这是首次报道的基于图像的家庭识别实用应用。我们的距离度量方法还可以用于预测群体类别,性别预测的 AUC 值为 0.97。我们提供了软件,用于高效地管理大型、通用的图像数据集。

相似文献

3
Dynamic Keypoint Detection Network for Image Matching.用于图像匹配的动态关键点检测网络
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14404-14419. doi: 10.1109/TPAMI.2023.3307889. Epub 2023 Nov 3.
9
Keypoint Transfer for Fast Whole-Body Segmentation.关键点迁移的快速全身分割。
IEEE Trans Med Imaging. 2020 Feb;39(2):273-282. doi: 10.1109/TMI.2018.2851194. Epub 2018 Jun 27.

本文引用的文献

6
Keypoint Transfer for Fast Whole-Body Segmentation.关键点迁移的快速全身分割。
IEEE Trans Med Imaging. 2020 Feb;39(2):273-282. doi: 10.1109/TMI.2018.2851194. Epub 2018 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验