IEEE Trans Med Imaging. 2022 Apr;41(4):836-845. doi: 10.1109/TMI.2021.3123252. Epub 2022 Apr 1.
We propose a novel pairwise distance measure between image keypoint sets, for the purpose of large-scale medical image indexing. Our measure generalizes the Jaccard index to account for soft set equivalence (SSE) between keypoint elements, via an adaptive kernel framework modeling uncertainty in keypoint appearance and geometry. A new kernel is proposed to quantify the variability of keypoint geometry in location and scale. Our distance measure may be estimated between O (N ) image pairs in [Formula: see text] operations via keypoint indexing. Experiments report the first results for the task of predicting family relationships from medical images, using 1010 T1-weighted MRI brain volumes of 434 families including monozygotic and dizygotic twins, siblings and half-siblings sharing 100%-25% of their polymorphic genes. Soft set equivalence and the keypoint geometry kernel improve upon standard hard set equivalence (HSE) and appearance kernels alone in predicting family relationships. Monozygotic twin identification is near 100%, and three subjects with uncertain genotyping are automatically paired with their self-reported families, the first reported practical application of image-based family identification. Our distance measure can also be used to predict group categories, sex is predicted with an AUC = 0.97. Software is provided for efficient fine-grained curation of large, generic image datasets.
我们提出了一种新的图像关键点集之间的成对距离度量方法,用于大规模医学图像索引。我们的度量方法通过自适应核框架来推广杰卡德指数,以考虑关键点元素之间的软集合等价(SSE),通过该框架可以对关键点外观和几何形状的不确定性进行建模。我们提出了一种新的核函数来量化关键点几何形状在位置和尺度上的可变性。我们的距离度量方法可以通过关键点索引在[Formula: see text]操作中估计 O(N)对图像对之间的距离。实验报告了首次使用来自 434 个家庭的 1010 个 T1 加权 MRI 脑体积的任务,包括同卵双胞胎和异卵双胞胎、兄弟姐妹和共享 100%-25%多态性基因的半兄弟姐妹,来预测家族关系的结果。软集合等价和关键点几何形状核函数在预测家族关系方面优于标准的硬集合等价(HSE)和外观核函数。同卵双胞胎的识别率接近 100%,并且有 3 名基因分型不确定的受试者被自动与其自述的家庭配对,这是首次报道的基于图像的家庭识别实用应用。我们的距离度量方法还可以用于预测群体类别,性别预测的 AUC 值为 0.97。我们提供了软件,用于高效地管理大型、通用的图像数据集。