Suppr超能文献

小鼠胚胎干细胞中的Nanog动态变化:系统生物学方法的研究结果

Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches.

作者信息

Marucci Lucia

机构信息

Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.

BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.

出版信息

Stem Cells Int. 2017;2017:7160419. doi: 10.1155/2017/7160419. Epub 2017 Jun 8.

Abstract

Mouse embryonic stem cells (mESCs), derived from the inner cell mass of the blastocyst, are pluripotent stem cells having self-renewal capability and the potential of differentiating into every cell type under the appropriate culture conditions. An increasing number of reports have been published to uncover the molecular mechanisms that orchestrate pluripotency and cell fate specification using combined computational and experimental methodologies. Here, we review recent systems biology approaches to describe the causes and functions of gene expression heterogeneity and complex temporal dynamics of pluripotency markers in mESCs under uniform culture conditions. In particular, we focus on the dynamics of Nanog, a key regulator of the core pluripotency network and of mESC fate. We summarize the strengths and limitations of different experimental and modeling approaches and discuss how various strategies could be used.

摘要

小鼠胚胎干细胞(mESCs)来源于囊胚的内细胞团,是具有自我更新能力的多能干细胞,在适当的培养条件下有分化为各种细胞类型的潜力。越来越多的报告通过结合计算和实验方法,揭示了调控多能性和细胞命运特化的分子机制。在这里,我们回顾了最近的系统生物学方法,以描述在均匀培养条件下mESCs中基因表达异质性和多能性标志物复杂时间动态的原因和功能。特别是,我们关注核心多能性网络和mESC命运的关键调节因子Nanog的动态变化。我们总结了不同实验和建模方法的优缺点,并讨论了如何运用各种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab1b/5480057/32a56cbe81ef/SCI2017-7160419.001.jpg

相似文献

1
Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches.
Stem Cells Int. 2017;2017:7160419. doi: 10.1155/2017/7160419. Epub 2017 Jun 8.
3
A model-based analysis of culture-dependent phenotypes of mESCs.
PLoS One. 2014 Mar 18;9(3):e92496. doi: 10.1371/journal.pone.0092496. eCollection 2014.
4
The long non-coding RNA Snhg3 is essential for mouse embryonic stem cell self-renewal and pluripotency.
Stem Cell Res Ther. 2019 May 31;10(1):157. doi: 10.1186/s13287-019-1270-5.
5
p57 Suppresses the Pluripotency and Proliferation of Mouse Embryonic Stem Cells by Positively Regulating p53 Activation.
Stem Cells Int. 2021 Dec 24;2021:4968649. doi: 10.1155/2021/4968649. eCollection 2021.
6
Computational modelling of embryonic stem-cell fate control.
Development. 2015 Jul 1;142(13):2250-60. doi: 10.1242/dev.116343.
7
Increasing maternal age of blastocyst affects on efficient derivation and behavior of mouse embryonic stem cells.
J Cell Biochem. 2019 Mar;120(3):3716-3726. doi: 10.1002/jcb.27652. Epub 2018 Sep 11.
10
Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices.
Biomaterials. 2017 Mar;119:9-22. doi: 10.1016/j.biomaterials.2016.12.006. Epub 2016 Dec 10.

引用本文的文献

2
The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes.
Nat Genet. 2024 Jan;56(1):100-111. doi: 10.1038/s41588-023-01603-8. Epub 2023 Dec 4.
4
CELLoGeNe - An energy landscape framework for logical networks controlling cell decisions.
iScience. 2022 Jul 14;25(8):104743. doi: 10.1016/j.isci.2022.104743. eCollection 2022 Aug 19.
5
Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks.
ACS Synth Biol. 2022 Jul 15;11(7):2300-2313. doi: 10.1021/acssynbio.1c00632. Epub 2022 Jun 21.
6
: mining enriched -wise combinations of genomic features with Monte Carlo and dictionary learning.
NAR Genom Bioinform. 2021 Dec 22;3(4):lqab114. doi: 10.1093/nargab/lqab114. eCollection 2021 Dec.
7
Stemness-Associated Markers Are Expressed in Extracranial Arteriovenous Malformation.
Front Surg. 2021 Mar 19;8:621089. doi: 10.3389/fsurg.2021.621089. eCollection 2021.
10
A tunable dual-input system for on-demand dynamic gene expression regulation.
Nat Commun. 2019 Oct 2;10(1):4481. doi: 10.1038/s41467-019-12329-9.

本文引用的文献

3
Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.
Stem Cells. 2016 Jun;34(6):1427-36. doi: 10.1002/stem.2345. Epub 2016 Mar 16.
4
Proteome Analysis of Ground State Pluripotency.
Sci Rep. 2015 Dec 16;5:17985. doi: 10.1038/srep17985.
5
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition.
Nat Cell Biol. 2015 Dec;17(12):1523-35. doi: 10.1038/ncb3264. Epub 2015 Nov 16.
7
Gene expression. MicroRNA control of protein expression noise.
Science. 2015 Apr 3;348(6230):128-32. doi: 10.1126/science.aaa1738.
8
Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst.
Cell Rep. 2015 Mar 10;10(9):1508-1520. doi: 10.1016/j.celrep.2015.02.010. Epub 2015 Mar 5.
9
Deconstructing transcriptional heterogeneity in pluripotent stem cells.
Nature. 2014 Dec 4;516(7529):56-61. doi: 10.1038/nature13920.
10
Regulatory principles of pluripotency: from the ground state up.
Cell Stem Cell. 2014 Oct 2;15(4):416-430. doi: 10.1016/j.stem.2014.09.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验