Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
PLoS One. 2014 Mar 18;9(3):e92496. doi: 10.1371/journal.pone.0092496. eCollection 2014.
Mouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells. Recent findings on serum-free culture conditions with specific inhibitors (known as 2i) demonstrate that the inhibition of this pathway reduces transcription factor heterogeneity and is vital to maintain ground state pluripotency of mESCs. We suggest a novel mathematical model to explicitly integrate FGF4/Erk signalling into an interaction network of key pluripotency factors (namely Oct4, Sox2, Nanog and Rex1). The envisaged model allows to explore whether and how proposed mechanisms and feedback regulations can account for different expression patterns in mESC cultures. We demonstrate that an FGF4/Erk-mediated negative feedback is sufficient to induce molecular heterogeneity with respect to Nanog and Rex1 expression and thus critically regulates the propensity for differentiation and the loss of pluripotency. Furthermore, we compare simulation results on the transcription factor dynamics in different self-renewing states and during differentiation with experimental data on a Rex1GFPd2 reporter cell line using flow cytometry and qRT-PCR measurements. Concluding from our results we argue that interaction between FGF4/Erk signalling and Nanog expression qualifies as a key mechanism to manipulate mESC pluripotency. In particular, we infer that ground state pluripotency under 2i is achieved by shifting stable expression pattern of Nanog from a bistable into a monostable regulation impeding stochastic state transitions. Furthermore, we derive testable predictions on altering the degree of Nanog heterogeneity and on the frequency of state transitions in LIF/serum conditions to challenge our model assumptions.
小鼠胚胎干细胞(mESCs)可以在许多传代中保持增殖和未分化状态(自我更新),同时保留产生生物体所有细胞类型的潜力(多能性)。自分泌 FGF4/Erk 信号已被确定为这些细胞中命运决定和谱系承诺的主要刺激因素。最近在具有特定抑制剂(称为 2i)的无血清培养条件下的发现表明,该途径的抑制减少了转录因子异质性,对于维持 mESCs 的基础状态多能性至关重要。我们建议一种新的数学模型,将 FGF4/Erk 信号明确整合到关键多能性因子(即 Oct4、Sox2、Nanog 和 Rex1)的相互作用网络中。所设想的模型允许探索提议的机制和反馈调节是否以及如何能够解释 mESC 培养物中的不同表达模式。我们证明,FGF4/Erk 介导的负反馈足以诱导 Nanog 和 Rex1 表达的分子异质性,从而对分化的倾向和多能性的丧失进行关键调节。此外,我们比较了不同自我更新状态和分化过程中转录因子动力学的模拟结果与使用流式细胞术和 qRT-PCR 测量的 Rex1GFPd2 报告细胞系的实验数据。从我们的结果中得出结论,我们认为 FGF4/Erk 信号与 Nanog 表达之间的相互作用是操纵 mESC 多能性的关键机制。特别是,我们推断,2i 下的基础状态多能性是通过将 Nanog 的稳定表达模式从双稳态转变为单稳态调节来实现的,从而阻碍随机状态转变。此外,我们得出了可测试的预测,即改变 Nanog 异质性的程度以及在 LIF/血清条件下的状态转变频率,以挑战我们的模型假设。