Mustafa Adil, La Regina Antonella, Pedone Elisa, Erten Ahmet, Marucci Lucia
School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1TW, UK.
School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
Biosensors (Basel). 2025 Jul 3;15(7):427. doi: 10.3390/bios15070427.
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies of cells' responses to drugs. Here, we report the design and testing of a novel microfluidic device of simple production (single Polydimethylsiloxane layer), which integrates a micromixer with vacuum-assisted cell loading for long-term mammalian cell culture and dynamic mixing of four different culture media. Finite element modeling was used to predict flow rates and device dimensions to achieve diffusion-based fluid mixing. The device showed efficient mixing and dynamic exchange of media in the cell-trapping chambers, and viability of mammalian cells cultured for long-term in the device. This work represents the first attempt to integrate single-layer microfluidic mixing devices with vacuum-assisted cell-loading systems for mammalian cell culture and dynamic stimulation.
在微流控设备中严格控制细胞微环境的可能性,代表着朝着体外细胞表型的精确分析迈出了重要一步。能够实现长期哺乳动物细胞培养以及对培养环境进行动态调节的微流控平台,可支持对细胞药物反应的定量研究。在此,我们报告了一种新型微流控设备的设计与测试,该设备制作简单(单聚二甲基硅氧烷层),集成了一个微混合器以及用于长期哺乳动物细胞培养和四种不同培养基动态混合的真空辅助细胞加载装置。利用有限元建模来预测流速和设备尺寸,以实现基于扩散的流体混合。该设备在细胞捕获室中显示出高效的混合以及培养基的动态交换,并且在该设备中进行长期培养的哺乳动物细胞具有活力。这项工作代表了将单层微流控混合设备与真空辅助细胞加载系统集成用于哺乳动物细胞培养和动态刺激的首次尝试。