Aerospace Systems Directorate, Air Force Research Laboratory , 1950 Fifth Street, Bldg 18, Wright-Patterson Air Force Base, Ohio 45433, United States.
UES Inc. , 4401 Dayton-Xenia Road, Beavercreek, Ohio 45432, United States.
ACS Nano. 2017 Jul 25;11(7):7060-7073. doi: 10.1021/acsnano.7b02695. Epub 2017 Jul 14.
Single crystals of the van der Waals layered ferrielectric material CuInPS spontaneously phase separate when synthesized with Cu deficiency. Here we identify a route to form and tune intralayer heterostructures between the corresponding ferrielectric (CuInPS) and paraelectric (InPS) phases through control of chemical phase separation. We conclusively demonstrate that Cu-deficient CuInPS forms a single phase at high temperature. We also identify the mechanism by which the phase separation proceeds upon cooling. Above 500 K both Cu and In become mobile, while PS anions maintain their structure. We therefore propose that this transition can be understood as eutectic melting on the cation sublattice. Such a model suggests that the transition temperature for the melting process is relatively low because it requires only a partial reorganization of the crystal lattice. As a result, varying the cooling rate through the phase transition controls the lateral extent of chemical domains over several decades in size. At the fastest cooling rate, the dimensional confinement of the ferrielectric CuInPS phase to nanoscale dimensions suppresses ferrielectric ordering due to the intrinsic ferroelectric size effect. Intralayer heterostructures can be formed, destroyed, and re-formed by thermal cycling, thus enabling the possibility of finely tuned ferroic structures that can potentially be optimized for specific device architectures.
当用铜缺乏来合成范德华层状铁电材料 CuInPS 时,其单晶体就会自发地进行相分离。在这里,我们通过控制化学相分离,找到了一种形成和调整相应铁电 (CuInPS) 和非铁电 (InPS) 相之间的层内异质结构的方法。我们明确地证明了在高温下,铜缺乏的 CuInPS 形成单相。我们还确定了冷却时相分离进行的机制。在 500 K 以上,Cu 和 In 都变得活跃,而 PS 阴离子保持其结构。因此,我们提出,这种转变可以理解为阳离子子晶格上的共晶熔化。这样的模型表明,熔化过程的转变温度相对较低,因为它只需要晶体晶格的部分重新组织。结果,通过相变来改变冷却速率可以控制化学畴的横向尺寸,其范围可达数十个数量级。在最快的冷却速率下,铁电 CuInPS 相的维度限制到纳米尺寸,由于内在的铁电尺寸效应,抑制了铁电有序。通过热循环可以形成、破坏和重新形成层内异质结构,从而实现对铁电结构的精细调整,这可能对特定的器件结构进行优化。