Søndergaard Dan, Nielsen Svend, Pedersen Christian N S, Besenbacher Søren
.
J Integr Bioinform. 2017 Jul 7;14(2):20170013. doi: 10.1515/jib-2017-0013.
A cancer of unknown primary (CUP) is a metastatic cancer for which standard diagnostic tests fail to identify the location of the primary tumor. CUPs account for 3-5% of cancer cases. Using molecular data to determine the location of the primary tumor in such cases can help doctors make the right treatment choice and thus improve the clinical outcome. In this paper, we present a new method for predicting the location of the primary tumor using gene expression data: locating cancers of unknown primary (LoCUP). The method models the data as a mixture of normal and tumor cells and thus allows correct classification even in impure samples, where the tumor biopsy is contaminated by a large fraction of normal cells. We find that our method provides a significant increase in classification accuracy (95.8% over 90.8%) on simulated low-purity metastatic samples and shows potential on a small dataset of real metastasis samples with known origin.
原发灶不明癌(CUP)是一种转移性癌症,标准诊断测试无法确定其原发肿瘤的位置。CUP占癌症病例的3%至5%。在此类病例中,利用分子数据确定原发肿瘤的位置有助于医生做出正确的治疗选择,从而改善临床结果。在本文中,我们提出了一种利用基因表达数据预测原发肿瘤位置的新方法:不明原发灶癌症定位(LoCUP)。该方法将数据建模为正常细胞和肿瘤细胞的混合物,因此即使在肿瘤活检被大量正常细胞污染的不纯样本中也能进行正确分类。我们发现,我们的方法在模拟的低纯度转移样本上显著提高了分类准确率(从90.8%提高到95.8%),并且在已知来源的真实转移样本的小数据集上显示出潜力。