Suppr超能文献

ISOpureR:混合肿瘤图谱计算纯化算法的R语言实现

ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles.

作者信息

Anghel Catalina V, Quon Gerald, Haider Syed, Nguyen Francis, Deshwar Amit G, Morris Quaid D, Boutros Paul C

机构信息

Informatics and Biocomputing Program, Ontario Institute for Cancer Research, 661 University Avenue, Toronto, Suite 510, M5G 0A3, ON, Canada.

Department of Computer Science, University of Toronto, 10 King's College Road, Room 3303, M5S 3G4, Toronto, ON, Canada.

出版信息

BMC Bioinformatics. 2015 May 14;16:156. doi: 10.1186/s12859-015-0597-x.

Abstract

BACKGROUND

Tumour samples containing distinct sub-populations of cancer and normal cells present challenges in the development of reproducible biomarkers, as these biomarkers are based on bulk signals from mixed tumour profiles. ISOpure is the only mRNA computational purification method to date that does not require a paired tumour-normal sample, provides a personalized cancer profile for each patient, and has been tested on clinical data. Replacing mixed tumour profiles with ISOpure-preprocessed cancer profiles led to better prognostic gene signatures for lung and prostate cancer.

RESULTS

To simplify the integration of ISOpure into standard R-based bioinformatics analysis pipelines, the algorithm has been implemented as an R package. The ISOpureR package performs analogously to the original code in estimating the fraction of cancer cells and the patient cancer mRNA abundance profile from tumour samples in four cancer datasets.

CONCLUSIONS

The ISOpureR package estimates the fraction of cancer cells and personalized patient cancer mRNA abundance profile from a mixed tumour profile. This open-source R implementation enables integration into existing computational pipelines, as well as easy testing, modification and extension of the model.

摘要

背景

含有不同癌症和正常细胞亚群的肿瘤样本在可重复生物标志物的开发中面临挑战,因为这些生物标志物基于混合肿瘤图谱的整体信号。ISOpure是迄今为止唯一一种不需要配对肿瘤-正常样本的mRNA计算纯化方法,可为每位患者提供个性化的癌症图谱,并且已经在临床数据上进行了测试。用ISOpure预处理的癌症图谱取代混合肿瘤图谱,可为肺癌和前列腺癌带来更好的预后基因特征。

结果

为了简化ISOpure与基于R的标准生物信息学分析流程的整合,该算法已被实现为一个R包。ISOpureR包在四个癌症数据集中,从肿瘤样本估计癌细胞比例和患者癌症mRNA丰度图谱时,其表现与原始代码类似。

结论

ISOpureR包从混合肿瘤图谱中估计癌细胞比例和个性化的患者癌症mRNA丰度图谱。这种开源的R实现能够集成到现有的计算流程中,同时便于对模型进行测试、修改和扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52be/4429941/cef8021f53b4/12859_2015_597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验