Suppr超能文献

DeMix:使用原始测量数据对混合癌症转录组进行反卷积。

DeMix: deconvolution for mixed cancer transcriptomes using raw measured data.

机构信息

Department of Bioinformatics and Computational Biology and Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Bioinformatics. 2013 Aug 1;29(15):1865-71. doi: 10.1093/bioinformatics/btt301. Epub 2013 May 27.

Abstract

MOTIVATION

Tissue samples of tumor cells mixed with stromal cells cause underdetection of gene expression signatures associated with cancer prognosis or response to treatment. In silico dissection of mixed cell samples is essential for analyzing expression data generated in cancer studies. Currently, a systematic approach is lacking to address three challenges in computational deconvolution: (i) violation of linear addition of expression levels from multiple tissues when log-transformed microarray data are used; (ii) estimation of both tumor proportion and tumor-specific expression, when neither is known a priori; and (iii) estimation of expression profiles for individual patients.

RESULTS

We have developed a statistical method for deconvolving mixed cancer transcriptomes, DeMix, which addresses the aforementioned issues in array-based expression data. We demonstrate the performance of our model in synthetic and real, publicly available, datasets. DeMix can be applied to ongoing biomarker-based clinical studies and to the vast expression datasets previously generated from mixed tumor and stromal cell samples.

AVAILABILITY

All codes are written in C and integrated into an R function, which is available at http://odin.mdacc.tmc.edu/∼wwang7/DeMix.html.

CONTACT

wwang7@mdanderson.org

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

肿瘤细胞与基质细胞混合的组织样本会导致与癌症预后或治疗反应相关的基因表达特征检测不足。对混合细胞样本进行计算分析对于分析癌症研究中生成的表达数据至关重要。目前,在计算去卷积方面,缺乏一种系统的方法来解决三个挑战:(i)当使用对数转换的微阵列数据时,违反了来自多个组织的表达水平的线性相加;(ii)当事先不知道肿瘤比例和肿瘤特异性表达时,对其进行估计;(iii)估计个体患者的表达谱。

结果

我们开发了一种用于去卷积混合癌症转录组的统计方法 DeMix,该方法解决了基于阵列的表达数据中上述问题。我们在合成数据集和真实的、公开可用的数据集上展示了我们模型的性能。DeMix 可以应用于正在进行的基于生物标志物的临床研究,以及以前从混合肿瘤和基质细胞样本中生成的大量表达数据集。

可用性

所有代码均用 C 编写,并集成到一个 R 函数中,可在 http://odin.mdacc.tmc.edu/∼wwang7/DeMix.html 获得。

联系方式

wwang7@mdanderson.org

补充信息

补充数据可在生物信息学在线获得。

相似文献

2
Cancer outlier detection based on likelihood ratio test.基于似然比检验的癌症异常值检测。
Bioinformatics. 2008 Oct 1;24(19):2193-9. doi: 10.1093/bioinformatics/btn372. Epub 2008 Aug 12.
4
DINGO: differential network analysis in genomics.DINGO:基因组学中的差异网络分析
Bioinformatics. 2015 Nov 1;31(21):3413-20. doi: 10.1093/bioinformatics/btv406. Epub 2015 Jul 6.
5
Statistical expression deconvolution from mixed tissue samples.统计表达去卷积从混合组织样本。
Bioinformatics. 2010 Apr 15;26(8):1043-9. doi: 10.1093/bioinformatics/btq097. Epub 2010 Mar 4.
10
Applications of beta-mixture models in bioinformatics.β混合模型在生物信息学中的应用。
Bioinformatics. 2005 May 1;21(9):2118-22. doi: 10.1093/bioinformatics/bti318. Epub 2005 Feb 15.

引用本文的文献

5
Modeling genetic heterogeneity of drug response and resistance in cancer.模拟癌症中药物反应和耐药性的遗传异质性。
Curr Opin Syst Biol. 2019 Oct;17:8-14. doi: 10.1016/j.coisb.2019.09.003. Epub 2019 Sep 11.

本文引用的文献

3
Gene expression deconvolution in linear space.线性空间中的基因表达反卷积
Nat Methods. 2011 Dec 28;9(1):8-9; author reply 9. doi: 10.1038/nmeth.1830.
5
Probabilistic analysis of gene expression measurements from heterogeneous tissues.从异质组织中测量基因表达的概率分析。
Bioinformatics. 2010 Oct 15;26(20):2571-7. doi: 10.1093/bioinformatics/btq406. Epub 2010 Jul 14.
7
Statistical expression deconvolution from mixed tissue samples.统计表达去卷积从混合组织样本。
Bioinformatics. 2010 Apr 15;26(8):1043-9. doi: 10.1093/bioinformatics/btq097. Epub 2010 Mar 4.
9
Electronically subtracting expression patterns from a mixed cell population.从混合细胞群体中以电子方式减去表达模式。
Bioinformatics. 2007 Dec 15;23(24):3328-34. doi: 10.1093/bioinformatics/btm508. Epub 2007 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验