Suppr超能文献

先进分子平台及全切片图像计算分析助力下的人类癌症新型基因型-表型关联

Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images.

作者信息

Cooper Lee A D, Kong Jun, Gutman David A, Dunn William D, Nalisnik Michael, Brat Daniel J

机构信息

1] Department of Biomedical Informatics, Emory University, Atlanta, GA, USA [2] Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA [3] Winship Cancer Institute, Emory University, Atlanta, GA, USA.

Department of Biomedical Informatics, Emory University, Atlanta, GA, USA.

出版信息

Lab Invest. 2015 Apr;95(4):366-76. doi: 10.1038/labinvest.2014.153. Epub 2015 Jan 19.

Abstract

Technological advances in computing, imaging, and genomics have created new opportunities for exploring relationships between histology, molecular events, and clinical outcomes using quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital image archives that capture histological details in high resolution. Commensurate advances in computing and image analysis algorithms enable mining of archives to extract descriptions of histology, ranging from basic human annotations to automatic and precisely quantitative morphometric characterization of hundreds of millions of cells. These imaging capabilities represent a new dimension in tissue-based studies, and when combined with genomic and clinical endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper, we review developments in quantitative imaging technology and illustrate how image features can be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue-based studies that integrate existing data resources. We show how these approaches can be used to explore the relation of the tumor microenvironment to genomic alterations and gene expression patterns and to define nuclear morphometric features that are predictive of genetic alterations and clinical outcomes. Challenges, limitations, and emerging opportunities in the area of quantitative imaging and integrative analyses are also discussed.

摘要

计算、成像和基因组学领域的技术进步为使用定量方法探索组织学、分子事件和临床结果之间的关系创造了新机会。玻片扫描设备现在能够快速生成大量数字图像档案,以高分辨率捕捉组织学细节。计算和图像分析算法的相应进步使得能够挖掘这些档案,以提取组织学描述,范围从基本的人工注释到对数亿个细胞的自动且精确的定量形态计量学特征描述。这些成像能力代表了基于组织的研究的一个新维度,并且当与基因组和临床终点相结合时,可用于探索肿瘤微环境的生物学特征,并发现遗传改变和患者预后的新形态生物标志物。在本文中,我们回顾了定量成像技术的发展,并举例说明图像特征如何与临床和基因组数据相结合,以研究癌症的基本问题。通过成胶质细胞瘤(GBM)研究中的实例,我们展示了来自癌症基因组图谱(TCGA)的公共数据如何能够作为一个开放平台,用于开展整合现有数据资源的基于计算机模拟组织的研究。我们展示了这些方法如何用于探索肿瘤微环境与基因组改变和基因表达模式之间的关系,并定义可预测遗传改变和临床结果的核形态计量学特征。还讨论了定量成像和综合分析领域的挑战、局限性及新出现的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55a3/4465352/3cbe18478e15/nihms630504f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验