Suppr超能文献

丹麦艰难梭菌新型自动化监测系统的描述与验证

Description and validation of a new automated surveillance system for Clostridium difficile in Denmark.

作者信息

Chaine M, Gubbels S, Voldstedlund M, Kristensen B, Nielsen J, Andersen L P, Ellermann-Eriksen S, Engberg J, Holm A, Olesen B, Schønheyder H C, Østergaard C, Ethelberg S, Mølbak K

机构信息

Department of Infectious Disease Epidemiology and Prevention,Statens Serum Institut,Copenhagen,Denmark.

Department of Clinical Microbiology,Rigshospitalet,Copenhagen,Denmark.

出版信息

Epidemiol Infect. 2017 Sep;145(12):2594-2602. doi: 10.1017/S0950268817001315. Epub 2017 Jul 10.

Abstract

The surveillance of Clostridium difficile (CD) in Denmark consists of laboratory based data from Departments of Clinical Microbiology (DCMs) sent to the National Registry of Enteric Pathogens (NREP). We validated a new surveillance system for CD based on the Danish Microbiology Database (MiBa). MiBa automatically collects microbiological test results from all Danish DCMs. We built an algorithm to identify positive test results for CD recorded in MiBa. A CD case was defined as a person with a positive culture for CD or PCR detection of toxin A and/or B and/or binary toxin. We compared CD cases identified through the MiBa-based surveillance with those reported to NREP and locally in five DCMs representing different Danish regions. During 2010-2014, NREP reported 13 896 CD cases, and the MiBa-based surveillance 21 252 CD cases. There was a 99·9% concordance between the local datasets and the MiBa-based surveillance. Surveillance based on MiBa was superior to the current surveillance system, and the findings show that the number of CD cases in Denmark hitherto has been under-reported. There were only minor differences between local data and the MiBa-based surveillance, showing the completeness and validity of CD data in MiBa. This nationwide electronic system can greatly strengthen surveillance and research in various applications.

摘要

丹麦艰难梭菌(CD)监测工作包括临床微生物学部门(DCMs)提交至国家肠道病原体登记处(NREP)的基于实验室的数据。我们基于丹麦微生物数据库(MiBa)验证了一种新的CD监测系统。MiBa自动收集丹麦所有DCMs的微生物检测结果。我们构建了一种算法来识别MiBa中记录的CD阳性检测结果。CD病例定义为CD培养阳性或毒素A和/或B和/或二元毒素PCR检测阳性的人。我们将通过基于MiBa的监测识别出的CD病例与向NREP报告的病例以及丹麦五个不同地区的五个DCMs本地报告的病例进行了比较。在2010 - 2014年期间,NREP报告了13896例CD病例,基于MiBa的监测报告了21252例CD病例。本地数据集与基于MiBa的监测之间的一致性为99.9%。基于MiBa的监测优于当前的监测系统,研究结果表明丹麦迄今CD病例数量报告不足。本地数据与基于MiBa的监测之间只有微小差异,表明MiBa中CD数据的完整性和有效性。这个全国性的电子系统能够极大地加强各种应用中的监测和研究。

相似文献

1
Description and validation of a new automated surveillance system for Clostridium difficile in Denmark.
Epidemiol Infect. 2017 Sep;145(12):2594-2602. doi: 10.1017/S0950268817001315. Epub 2017 Jul 10.
2
Sentinel surveillance and epidemiology of in Denmark, 2016 to 2019.
Euro Surveill. 2022 Dec;27(49). doi: 10.2807/1560-7917.ES.2022.27.49.2200244.
3
A validation of the Danish microbiology database (MiBa) and incidence rate of Actinotignum schaalii (Actinobaculum schaalii) bacteraemia in Denmark.
Clin Microbiol Infect. 2015 Dec;21(12):1097.e1-4. doi: 10.1016/j.cmi.2015.08.006. Epub 2015 Aug 28.
4
Clinical features of Clostridium difficile infection and molecular characterization of the isolated strains in a cohort of Danish hospitalized patients.
Eur J Clin Microbiol Infect Dis. 2012 Feb;31(2):185-92. doi: 10.1007/s10096-011-1292-0. Epub 2011 Jul 10.
5
Microbiology, epidemiology and diagnosis of Clostridium difficile infection.
Curr Top Microbiol Immunol. 2000;250:1-33. doi: 10.1007/978-3-662-06272-2_1.
7
Multicenter study of Clostridium difficile infection rates from 2000 to 2006.
Infect Control Hosp Epidemiol. 2010 Oct;31(10):1030-7. doi: 10.1086/656245.
8
Clostridium difficile infection in outpatients, Maryland and Connecticut, USA, 2002-2007.
Emerg Infect Dis. 2011 Oct;17(10):1946-9. doi: 10.3201/eid1710.110069.
9
Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.
Anaerobe. 2009 Dec;15(6):261-5. doi: 10.1016/j.anaerobe.2009.06.008. Epub 2009 Jul 8.

引用本文的文献

1
surveillance: 9-year comparison between automated surveillance and conventional surveillance in acute care hospitals.
Antimicrob Steward Healthc Epidemiol. 2025 Feb 24;5(1):e63. doi: 10.1017/ash.2025.5. eCollection 2025.
2
Mandatory surveillance of bacteremia conducted by automated monitoring.
Front Public Health. 2024 Dec 16;12:1502739. doi: 10.3389/fpubh.2024.1502739. eCollection 2024.
3
The accuracy of fully automated algorithms for surveillance of healthcare-onset infections in hospitalized patients.
Antimicrob Steward Healthc Epidemiol. 2022 Mar 16;2(1):e43. doi: 10.1017/ash.2022.32. eCollection 2022.
4
The Economic Burden of in Denmark: A Retrospective Cohort Study.
Front Public Health. 2020 Nov 26;8:562957. doi: 10.3389/fpubh.2020.562957. eCollection 2020.
6
Incidence Rates and Risk Factors of Infection in Solid Organ and Hematopoietic Stem Cell Transplant Recipients.
Open Forum Infect Dis. 2019 Feb 19;6(4):ofz086. doi: 10.1093/ofid/ofz086. eCollection 2019 Apr.

本文引用的文献

1
Survey of Clostridium difficile infection surveillance systems in Europe, 2011.
Euro Surveill. 2016 Jul 21;21(29). doi: 10.2807/1560-7917.ES.2016.21.29.30291.
2
Clostridium difficile in Children: To Treat or Not to Treat?
Pediatr Gastroenterol Hepatol Nutr. 2014 Jun;17(2):80-4. doi: 10.5223/pghn.2014.17.2.80. Epub 2014 Jun 30.
3
The Danish Microbiology Database (MiBa) 2010 to 2013.
Euro Surveill. 2014 Jan 9;19(1):20667. doi: 10.2807/1560-7917.es2014.19.1.20667.
4
Diverse sources of C. difficile infection identified on whole-genome sequencing.
N Engl J Med. 2013 Sep 26;369(13):1195-205. doi: 10.1056/NEJMoa1216064.
5
Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection.
Clin Infect Dis. 2013 Jun;56(11):1589-600. doi: 10.1093/cid/cit127. Epub 2013 Mar 5.
6
Clostridium difficile outbreaks: prevention and treatment strategies.
Risk Manag Healthc Policy. 2012;5:55-64. doi: 10.2147/RMHP.S13053. Epub 2012 Jul 3.
7
Vital signs: preventing Clostridium difficile infections.
MMWR Morb Mortal Wkly Rep. 2012 Mar 9;61(9):157-62.
8
Implementing automated surveillance for tracking Clostridium difficile infection at multiple healthcare facilities.
Infect Control Hosp Epidemiol. 2012 Mar;33(3):305-8. doi: 10.1086/664052. Epub 2012 Jan 19.
9
Binary toxin and death after Clostridium difficile infection.
Emerg Infect Dis. 2011 Jun;17(6):976-82. doi: 10.3201/eid/1706.101483.
10
Automated surveillance of Clostridium difficile infections using BioSense.
Infect Control Hosp Epidemiol. 2011 Jan;32(1):26-33. doi: 10.1086/657633. Epub 2010 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验