Suppr超能文献

基于遥感技术的景观指标用于评估热带森林中受威胁鸟类的栖息地

Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest.

作者信息

Singh Minerva, Tokola Timo, Hou Zhengyang, Notarnicola Claudia

机构信息

University of Cambridge Cambridge UK.

School of Forest Sciences University of Eastern Finland Joensuu Finland.

出版信息

Ecol Evol. 2017 May 18;7(13):4552-4567. doi: 10.1002/ece3.2970. eCollection 2017 Jul.

Abstract

Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.

摘要

鸟类在森林斑块中的存续与森林斑块的隔离程度、大小密切相关,斑块及其基质内的植被结构是鸟类栖息地适宜性的重要预测指标。利用星载光学(陆地卫星)、ALOS - PALSAR(雷达)和机载激光雷达(LiDAR)数据的组合,评估老挝南部伐区 - 农业景观中经历不同程度森林退化的森林斑块的森林结构变化。研究了不同遥感(RS)数据源在区分具有不同大小、形态和植被结构的森林斑块方面的效能。发现这些数据对不同斑块类别的不同退化水平敏感。此外,还研究了局部尺度森林结构变量(使用不同的RS数据和斑块面积表征)和景观变量(以距不同森林斑块的距离表征)对研究区域内国际自然保护联盟(IUCN)红色名录鸟类栖息地偏好的影响。使用机器学习算法MaxEnt,结合这些数据和实地收集的鸟类物种地理位置,确定影响不同鸟类物种栖息地偏好及其适宜栖息地的因素。结果表明,距不同森林斑块的距离在影响不同鸟类物种的栖息地适宜性方面比与植被结构和健康相关的局部尺度因素发挥更重要的作用。除了距森林斑块的距离外,LiDAR衍生的森林结构和陆地卫星衍生的光谱变量是鸟类栖息地偏好的重要决定因素。使用MaxEnt得出的模型用于创建总体栖息地适宜性地图(HSM),该地图描绘了维持所有鸟类物种的最合适栖息地斑块。这项工作还提供了这样的见解,即保留森林斑块,包括退化和孤立的森林斑块以及大片连续的森林斑块,可以促进热带农业景观内鸟类物种的保留。它还展示了RS数据在区分经历不同退化水平的森林和确定不同鸟类物种的栖息地偏好方面的有效利用。实际的保护管理规划工作可以将此类数据用于景观尺度监测和栖息地绘图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c534/5496523/e491a3e70cdd/ECE3-7-4552-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验