Bisbey Ryan P, Dichtel William R
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
ACS Cent Sci. 2017 Jun 28;3(6):533-543. doi: 10.1021/acscentsci.7b00127. Epub 2017 May 19.
The simultaneous polymerization and crystallization of monomers featuring directional bonding designs provides covalent organic frameworks (COFs), which are periodic polymer networks with robust covalent bonds arranged in two- or three-dimensional topologies. The range of properties characterized in COFs has rapidly expanded to include those of interest for heterogeneous catalysis, energy storage and photovoltaic devices, and proton-conducting membranes. Yet many of these applications will require materials quality, morphological control, and synthetic efficiency exceeding the capabilities of contemporary synthetic methods. This level of control will emerge from an improved fundamental understanding of COF nucleation and growth processes. More powerful characterization of structure and defects, improved syntheses guided by mechanistic understanding, and accessing diverse isolated forms, ranging from single crystals to thin films to colloidal suspensions, remain important frontier problems.
具有定向键合设计的单体同时进行聚合和结晶,可形成共价有机框架(COF),这是一种周期性聚合物网络,具有以二维或三维拓扑排列的强大共价键。COF所具有的一系列特性已迅速扩展,包括那些对多相催化、能量存储和光伏器件以及质子传导膜有意义的特性。然而,这些应用中的许多都将需要材料质量、形态控制和合成效率超越当代合成方法的能力。这种控制水平将源于对COF成核和生长过程的更深入的基本理解。对结构和缺陷进行更强大的表征、在机理理解的指导下改进合成方法以及获得从单晶到薄膜再到胶体悬浮液等各种不同的分离形式,仍然是重要的前沿问题。