Zhang Chuanfang John, Park Sang-Hoon, Ronan Oskar, Harvey Andrew, Seral-Ascaso Andrés, Lin Zifeng, McEvoy Niall, Boland Conor S, Berner Nina C, Duesberg Georg S, Rozier Patrick, Coleman Jonathan N, Nicolosi Valeria
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.
School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
Small. 2017 Sep;13(34). doi: 10.1002/smll.201701677. Epub 2017 Jul 10.
2D metal chalcogenide (MC) nanosheets (NS) have displayed high capacities as lithium-ion battery (LiB) anodes. Nevertheless, their complicated synthesis routes coupled with low electronic conductivity greatly limit them as promising LiB electrode material. Here, this work reports a facile single-walled carbon nanotube (SWCNT) percolating strategy for efficiently maximizing the electrochemical performances of gallium chalcogenide (GaX, X = S or Se). Multiscaled flexible GaX NS/SWCNT heterostructures with abundant voids for Li diffusion are fabricated by embedding the liquid-exfoliated GaX NS matrix within a SWCNT-percolated network; the latter improves the electron transport and ion diffusion kinetics as well as maintains the mechanical flexibility. Consequently, high capacities (i.e., 838 mAh g per gallium (II) sulfide (GaS) NS/SWCNT mass and 1107 mAh g per GaS mass; the latter is close to the theoretical value) and good rate capabilities are achieved, which can be majorly attributed to the alloying processes of disordered Ga formed after the first irreversible GaX conversion reaction, as monitored by in situ X-ray diffraction. The presented approach, colloidal solution processing of SWCNT and liquid-exfoliated MC NS to produce flexible paper-based electrode, could be generalized for wearable energy storage devices with promising performances.
二维金属硫族化合物(MC)纳米片(NS)作为锂离子电池(LiB)负极展现出了高容量。然而,其复杂的合成路线以及低电子电导率极大地限制了它们成为有前景的LiB电极材料。在此,本工作报道了一种简便的单壁碳纳米管(SWCNT)渗滤策略,用于有效最大化硫族化镓(GaX,X = S或Se)的电化学性能。通过将液体剥离的GaX NS基质嵌入SWCNT渗滤网络中,制备出具有丰富锂扩散空隙的多尺度柔性GaX NS/SWCNT异质结构;后者改善了电子传输和离子扩散动力学,并保持了机械柔韧性。因此,实现了高容量(即每硫化镓(II)(GaS)NS/SWCNT质量838 mAh g以及每GaS质量1107 mAh g;后者接近理论值)和良好的倍率性能,这主要归因于首次不可逆的GaX转化反应后形成的无序Ga的合金化过程,这通过原位X射线衍射监测。所提出的方法,即通过SWCNT和液体剥离的MC NS的胶体溶液处理来制备柔性纸基电极,可推广用于具有良好性能的可穿戴储能设备。