Suppr超能文献

组蛋白伴侣 CAF-1 在细胞可塑性中的新兴作用。

Emerging roles of the histone chaperone CAF-1 in cellular plasticity.

机构信息

Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA.

Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA.

出版信息

Curr Opin Genet Dev. 2017 Oct;46:83-94. doi: 10.1016/j.gde.2017.06.004. Epub 2017 Jul 7.

Abstract

During embryonic development, cells become progressively restricted in their differentiation potential. This is thought to be regulated by dynamic changes in chromatin structure and associated modifications, which act together to stabilize distinct specialized cell lineages. Remarkably, differentiated cells can be experimentally reprogrammed to a stem cell-like state or to alternative lineages. Thus, cellular reprogramming provides a valuable platform to study the mechanisms that normally safeguard cell identity and uncover factors whose manipulation facilitates cell fate transitions. Recent work has identified the chromatin assembly factor complex CAF-1 as a potent barrier to cellular reprogramming. In addition, CAF-1 has been implicated in the reversion of pluripotent cells to a totipotent-like state and in various lineage conversion paradigms, suggesting that modulation of CAF-1 levels may endow cells with a developmentally more plastic state. Here, we review these exciting results, discuss potential mechanisms and speculate on the possibility of exploiting chromatin assembly pathways to manipulate cell identity.

摘要

在胚胎发育过程中,细胞的分化潜能逐渐受到限制。这被认为是由染色质结构和相关修饰的动态变化所调控的,这些变化共同作用,稳定不同的特化细胞谱系。值得注意的是,分化细胞可以通过实验被重新编程为类似于干细胞的状态或其他谱系。因此,细胞重编程为研究通常保护细胞身份的机制以及发现操纵哪些因素有助于细胞命运转变提供了有价值的平台。最近的工作已经确定了染色质组装因子复合物 CAF-1 是细胞重编程的一个强大障碍。此外,CAF-1 已被牵连到多能性细胞向全能性样状态的逆转以及各种谱系转换范例中,这表明 CAF-1 水平的调节可能使细胞具有更具发育可塑性的状态。在这里,我们回顾这些令人兴奋的结果,讨论潜在的机制,并推测利用染色质组装途径来操纵细胞身份的可能性。

相似文献

1
Emerging roles of the histone chaperone CAF-1 in cellular plasticity.
Curr Opin Genet Dev. 2017 Oct;46:83-94. doi: 10.1016/j.gde.2017.06.004. Epub 2017 Jul 7.
2
Regulation of Reprogramming and Cellular Plasticity through Histone Exchange and Histone Variant Incorporation.
Cold Spring Harb Symp Quant Biol. 2015;80:165-75. doi: 10.1101/sqb.2015.80.027458. Epub 2015 Nov 18.
3
Chromatin Control of Developmental Dynamics and Plasticity.
Dev Cell. 2016 Sep 26;38(6):610-20. doi: 10.1016/j.devcel.2016.08.004.
4
The histone chaperone CAF-1 safeguards somatic cell identity.
Nature. 2015 Dec 10;528(7581):218-24. doi: 10.1038/nature15749.
5
Chromatin modifiers and remodellers: regulators of cellular differentiation.
Nat Rev Genet. 2014 Feb;15(2):93-106. doi: 10.1038/nrg3607. Epub 2013 Dec 24.
6
Pioneer transcription factors, chromatin dynamics, and cell fate control.
Curr Opin Genet Dev. 2016 Apr;37:76-81. doi: 10.1016/j.gde.2015.12.003. Epub 2016 Jan 27.
7
Lessons from expanded potential of embryonic stem cells: Moving toward totipotency.
J Genet Genomics. 2020 Mar 20;47(3):123-130. doi: 10.1016/j.jgg.2020.02.003. Epub 2020 Mar 7.
8
Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming.
Cell Rep. 2020 Jul 7;32(1):107870. doi: 10.1016/j.celrep.2020.107870.
9
The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming.
Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194407. doi: 10.1016/j.bbagrm.2019.194407. Epub 2019 Jul 26.

引用本文的文献

2
RebL1 is required for macronuclear structure stability and gametogenesis in .
Mar Life Sci Technol. 2024 Mar 26;6(2):183-197. doi: 10.1007/s42995-024-00219-z. eCollection 2024 May.
3
Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in .
Cells. 2023 Dec 13;12(24):2828. doi: 10.3390/cells12242828.
5
Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1.
Science. 2023 Aug 25;381(6660):eadd8673. doi: 10.1126/science.add8673.
7
Regulation of chromatin accessibility by the histone chaperone CAF-1 sustains lineage fidelity.
Nat Commun. 2022 Apr 29;13(1):2350. doi: 10.1038/s41467-022-29730-6.
8
Histone Chaperones as Cardinal Players in Development.
Front Cell Dev Biol. 2022 Apr 4;10:767773. doi: 10.3389/fcell.2022.767773. eCollection 2022.
9
Induced Neurons From Germ Cells in .
Front Neurosci. 2021 Dec 3;15:771687. doi: 10.3389/fnins.2021.771687. eCollection 2021.
10
Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division.
Nat Commun. 2021 Oct 12;12(1):5941. doi: 10.1038/s41467-021-26203-0.

本文引用的文献

1
Passing epigenetic silence to the next generation.
Science. 2017 Apr 7;356(6333):28-29. doi: 10.1126/science.aan1493.
2
Causal role for inheritance of H3K27me3 in maintaining the OFF state of a HOX gene.
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aai8236. Epub 2017 Mar 16.
3
DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation.
Science. 2017 Apr 7;356(6333):88-91. doi: 10.1126/science.aaj2114. Epub 2017 Mar 16.
4
Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA.
Science. 2017 Apr 7;356(6333):85-88. doi: 10.1126/science.aai8266. Epub 2017 Mar 16.
5
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
6
Deficiency of microRNA expands cell fate potential in pluripotent stem cells.
Science. 2017 Feb 10;355(6325). doi: 10.1126/science.aag1927. Epub 2017 Jan 12.
9
Molecular Criteria for Defining the Naive Human Pluripotent State.
Cell Stem Cell. 2016 Oct 6;19(4):502-515. doi: 10.1016/j.stem.2016.06.011. Epub 2016 Jul 14.
10
The landscape of accessible chromatin in mammalian preimplantation embryos.
Nature. 2016 Jun 30;534(7609):652-7. doi: 10.1038/nature18606. Epub 2016 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验