Suppr超能文献

个性化显著性及其预测。

Personalized Saliency and Its Prediction.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2975-2989. doi: 10.1109/TPAMI.2018.2866563. Epub 2018 Aug 23.

Abstract

Nearly all existing visual saliency models by far have focused on predicting a universal saliency map across all observers. Yet psychology studies suggest that visual attention of different observers can vary significantly under specific circumstances, especially a scene is composed of multiple salient objects. To study such heterogenous visual attention pattern across observers, we first construct a personalized saliency dataset and explore correlations between visual attention, personal preferences, and image contents. Specifically, we propose to decompose a personalized saliency map (referred to as PSM) into a universal saliency map (referred to as USM) predictable by existing saliency detection models and a new discrepancy map across users that characterizes personalized saliency. We then present two solutions towards predicting such discrepancy maps, i.e., a multi-task convolutional neural network (CNN) framework and an extended CNN with Person-specific Information Encoded Filters (CNN-PIEF). Extensive experimental results demonstrate the effectiveness of our models for PSM prediction as well their generalization capability for unseen observers.

摘要

迄今为止,几乎所有现有的视觉显著性模型都集中于预测所有观察者的通用显著性图。然而,心理学研究表明,在特定情况下,不同观察者的视觉注意力可能会有很大差异,尤其是当场景由多个显著对象组成时。为了研究不同观察者之间的这种异构视觉注意模式,我们首先构建了一个个性化显著性数据集,并探索了视觉注意、个人偏好和图像内容之间的相关性。具体来说,我们提出将个性化显著性图(称为 PSM)分解为可由现有显著性检测模型预测的通用显著性图(称为 USM)和用户之间的新差异图,以表征个性化显著性。然后,我们提出了两种预测这种差异图的解决方案,即多任务卷积神经网络(CNN)框架和带有用户特定信息编码滤波器的扩展 CNN(CNN-PIEF)。大量实验结果表明,我们的模型对于 PSM 预测以及对未见观察者的泛化能力是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验