Suppr超能文献

基于激光雷达支持的 CGAN-CNN-LSTM 模型的超短期风力预测。

Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar.

机构信息

School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.

College of New Energy, North China Electric Power University, Beijing 100096, China.

出版信息

Sensors (Basel). 2023 Apr 28;23(9):4369. doi: 10.3390/s23094369.

Abstract

Accurate prediction of wind power is of great significance to the stable operation of the power system and the vigorous development of the wind power industry. In order to further improve the accuracy of ultra-short-term wind power forecasting, an ultra-short-term wind power forecasting method based on the CGAN-CNN-LSTM algorithm is proposed. Firstly, the conditional generative adversarial network (CGAN) is used to fill in the missing segments of the data set. Then, the convolutional neural network (CNN) is used to extract the eigenvalues of the data, combined with the long short-term memory network (LSTM) to jointly construct a feature extraction module, and add an attention mechanism after the LSTM to assign weights to features, accelerate model convergence, and construct an ultra-short-term wind power forecasting model combined with the CGAN-CNN-LSTM. Finally, the position and function of each sensor in the Sole du Moulin Vieux wind farm in France is introduced. Then, using the sensor observation data of the wind farm as a test set, the CGAN-CNN-LSTM model was compared with the CNN-LSTM, LSTM, and SVM to verify the feasibility. At the same time, in order to prove the universality of this model and the ability of the CGAN, the model of the CNN-LSTM combined with the linear interpolation method is used for a controlled experiment with a data set of a wind farm in China. The final test results prove that the CGAN-CNN-LSTM model is not only more accurate in prediction results, but also applicable to a wide range of regions and has good value for the development of wind power.

摘要

准确预测风力对于电力系统的稳定运行和风力发电行业的蓬勃发展具有重要意义。为了进一步提高超短期风力预测的准确性,提出了一种基于 CGAN-CNN-LSTM 算法的超短期风力预测方法。首先,利用条件生成对抗网络(CGAN)填充数据集的缺失部分。然后,利用卷积神经网络(CNN)提取数据特征值,结合长短时记忆网络(LSTM)共同构建特征提取模块,并在 LSTM 后添加注意力机制,为特征分配权重,加速模型收敛,构建 CGAN-CNN-LSTM 联合的超短期风力预测模型。最后,介绍了法国 Sole du Moulin Vieux 风电场中每个传感器的位置和功能。然后,使用风电场的传感器观测数据作为测试集,将 CGAN-CNN-LSTM 模型与 CNN-LSTM、LSTM 和 SVM 进行比较,验证其可行性。同时,为了证明该模型和 CGAN 的通用性,使用与线性插值方法相结合的 CNN-LSTM 模型对中国风电场数据集进行了对照实验。最终的测试结果证明,CGAN-CNN-LSTM 模型不仅在预测结果上更加准确,而且适用于广泛的地区,具有很好的风力发展价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c577/10181600/e68b80d85506/sensors-23-04369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验