IEEE Trans Med Imaging. 2017 Nov;36(11):2376-2388. doi: 10.1109/TMI.2017.2724070. Epub 2017 Jul 7.
In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.
在本文中,我们开发了一种新的弱监督学习算法,用于学习在组织病理学图像中分割癌症区域。本文在多实例学习(MIL)框架下进行,提出了一种新的表述方式,即深度弱监督(DWS);我们还提出了一种有效方法,将约束引入我们的神经网络,以协助学习过程。我们的算法有三个贡献:1)我们构建了一个端到端的学习系统,该系统使用全卷积网络(FCN)对癌症区域进行分割,其中进行图像到图像的弱监督学习;2)我们开发了一种 DWS 表述方式,在 FCN 中利用多尺度学习进行弱监督;3)我们的方法引入了关于正例的约束,以有效地探索易于获取且对学习过程有显著促进作用的额外弱监督信息。我们提出的算法简称为 DWS-MIL,易于实现且可以高效训练。我们的系统在大规模组织病理学图像数据集上展示了最先进的结果,并可应用于医学成像领域的各种应用,如 MRI、CT 和超声图像。