Suppr超能文献

约束卷积神经网络损失的弱监督分割。

Constrained-CNN losses for weakly supervised segmentation.

机构信息

ÉTS Montréal, QC, Canada.

ÉTS Montréal, QC, Canada.

出版信息

Med Image Anal. 2019 May;54:88-99. doi: 10.1016/j.media.2019.02.009. Epub 2019 Feb 13.

Abstract

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons. To the best of our knowledge, the method of Pathak et al. (2015a) is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from weak labels, mimicking full supervision and facilitating dual optimization. We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better results than the Lagrangian-based constrained CNNs in Pathak et al. (2015a), while reducing the computational demand for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level of segmentation performance that is comparable to full supervision on three separate tasks. While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints, e.g., invariant shape moments (Klodt and Cremers, 2011) and other region statistics (Lim et al., 2014). Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic medical image segmentation. Our code is publicly available.

摘要

基于部分标记图像或图像标签的弱监督学习目前在 CNN 分割中引起了极大的关注,因为它可以减轻对全像素/体素注释的需求。对网络输出施加高阶(全局)不等式约束(例如,限制目标区域的大小)可以利用未标记的数据,利用领域特定知识指导训练过程。不等式约束非常灵活,因为它们不假设准确的先验知识。然而,由于计算上的可行性原因,约束拉格朗日对偶优化在深度网络中主要被避免。据我们所知,Pathak 等人(2015a)的方法是唯一解决具有线性约束的深度 CNN 在弱监督分割中的先验工作。它使用约束从弱标签合成完全标记的训练掩模(提案),模仿完全监督并促进对偶优化。我们建议引入可微分惩罚,直接在损失函数中强制执行不等式约束,避免昂贵的拉格朗日对偶迭代和提案生成。从约束优化的角度来看,我们的简单基于惩罚的方法不是最优的,因为不能保证约束得到满足。然而,令人惊讶的是,它比 Pathak 等人(2015a)基于拉格朗日的约束 CNN 产生了更好的结果,同时降低了训练的计算需求。通过仅注释一小部分像素,所提出的方法可以达到与完全监督在三个独立任务上可比的分割性能水平。虽然我们的实验集中在基本的线性约束上,如目标区域大小和图像标签,但我们的框架可以很容易地扩展到其他非线性约束,例如不变形状矩(Klodt 和 Cremers,2011)和其他区域统计(Lim 等人,2014)。因此,它有可能缩小语义医学图像分割中弱监督和完全监督学习之间的差距。我们的代码是公开的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验