Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
Sci Rep. 2023 Feb 13;13(1):2562. doi: 10.1038/s41598-023-29160-4.
While optical microscopy inspection of blood films and bone marrow aspirates by a hematologist is a crucial step in establishing diagnosis of acute leukemia, especially in low-resource settings where other diagnostic modalities are not available, the task remains time-consuming and prone to human inconsistencies. This has an impact especially in cases of Acute Promyelocytic Leukemia (APL) that require urgent treatment. Integration of automated computational hematopathology into clinical workflows can improve the throughput of these services and reduce cognitive human error. However, a major bottleneck in deploying such systems is a lack of sufficient cell morphological object-labels annotations to train deep learning models. We overcome this by leveraging patient diagnostic labels to train weakly-supervised models that detect different types of acute leukemia. We introduce a deep learning approach, Multiple Instance Learning for Leukocyte Identification (MILLIE), able to perform automated reliable analysis of blood films with minimal supervision. Without being trained to classify individual cells, MILLIE differentiates between acute lymphoblastic and myeloblastic leukemia in blood films. More importantly, MILLIE detects APL in blood films (AUC 0.94 ± 0.04) and in bone marrow aspirates (AUC 0.99 ± 0.01). MILLIE is a viable solution to augment the throughput of clinical pathways that require assessment of blood film microscopy.
虽然血液涂片和骨髓抽吸物的光学显微镜检查由血液学家进行,这是确定急性白血病诊断的关键步骤,特别是在资源有限的环境中,无法获得其他诊断方式的情况下,但这项任务仍然很耗时,且容易出现人为不一致的情况。在需要紧急治疗的急性早幼粒细胞白血病(APL)病例中,这种情况尤其明显。将自动化计算血液病理学纳入临床工作流程可以提高这些服务的效率,并减少认知人为错误。然而,部署此类系统的一个主要瓶颈是缺乏足够的细胞形态学对象标签注释来训练深度学习模型。我们通过利用患者诊断标签来训练弱监督模型来解决这个问题,这些模型可以检测不同类型的急性白血病。我们引入了一种深度学习方法,即用于白细胞识别的多实例学习(MILLIE),它可以在最小监督的情况下对血液涂片进行自动可靠的分析。MILLIE 不需要经过训练来对单个细胞进行分类,它可以区分血液涂片上的急性淋巴细胞白血病和急性髓细胞白血病。更重要的是,MILLIE 可以在血液涂片(AUC 0.94 ± 0.04)和骨髓抽吸物(AUC 0.99 ± 0.01)中检测到 APL。MILLIE 是一种可行的解决方案,可以提高需要评估血液涂片显微镜检查的临床路径的效率。