Suppr超能文献

皮秒激光微纳加工快速制作柔性神经束内电极阵列

Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.

机构信息

Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg, Germany.

出版信息

J Neural Eng. 2017 Dec;14(6):066016. doi: 10.1088/1741-2552/aa7eea.

Abstract

OBJECTIVE

Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes.

APPROACH

We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation.

MAIN RESULTS

The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds.

SIGNIFICANCE

Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

摘要

目的

可以使用各种类型的电极阵列来实现周围神经系统的接口。然而,在具有合理数量通道的情况下,刺激和记录神经会限制可用系统的数量。向人体临床试验的转化研究需要设备的安全性和生物相容性,但在开发过程中可以从设计灵活性中受益,以实现探头的个性化。

方法

我们选择了已建立的医用级植入材料,如贵金属和聚对二甲苯 C,以使用皮秒激光微结构开发用于新型神经束内电极阵列的快速原型制作工艺。与神经束内植入策略一起,为啮齿动物模型设计了一种方案。首先在体外盐溶液中对电极进行了特性和优化测试,然后在慢性植入大鼠坐骨神经中验证了性能和生物相容性。

主要结果

新型制造工艺适合原型制作和构建神经束内电极阵列。电极部位的电化学性能得到增强,并测试了其长期稳定性。在大鼠坐骨神经中的慢性植入显示出良好的生物相容性、选择性和稳定的刺激阈值。

意义

当激光微结构将结构尺寸定义在微尺度时,可使用已建立的医用级材料来制作神经束内神经电极阵列。设计灵活性可缩短重新设计周期时间,并且材料证书对于临床试验之路的安全性研究是有益的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验