Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331.
Department of Physics, Oregon State University, Corvallis, OR 97331.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8023-8028. doi: 10.1073/pnas.1703240114. Epub 2017 Jul 10.
Sensory hair cells rely on otoferlin as the calcium sensor for exocytosis and encoding of sound preferentially over the neuronal calcium sensor synaptotagmin. Although it is established that synaptotagmin cannot rescue the otoferlin KO phenotype, the large size and low solubility of otoferlin have prohibited direct biochemical comparisons that could establish functional differences between these two proteins. To address this challenge, we have developed a single-molecule colocalization binding titration assay (smCoBRA) that can quantitatively characterize full-length otoferlin from mammalian cell lysate. Using smCoBRA, we found that, although both otoferlin and synaptotagmin bind membrane fusion SNARE proteins, only otoferlin interacts with the L-type calcium channel Cav1.3, showing a significant difference between the synaptic proteins. Furthermore, otoferlin was found capable of interacting with multiple SNARE and Cav1.3 proteins simultaneously, forming a heterooligomer complex. We also found that a deafness-causing missense mutation in otoferlin attenuates binding between otoferlin and Cav1.3, suggesting that deficiencies in this interaction may form the basis for otoferlin-related hearing loss. Based on our results, we propose a model in which otoferlin acts as a calcium-sensitive scaffolding protein, localizing SNARE proteins proximal to the calcium channel so as to synchronize calcium influx with membrane fusion. Our findings also provide a molecular-level explanation for the observation that synaptotagmin and otoferlin are not functionally redundant. This study also validates a generally applicable methodology for quantitatively characterizing large, multivalent membrane proteins.
感觉毛细胞依赖于 otoferlin 作为钙传感器进行胞吐作用,并优先对声音进行编码,而不是神经元钙传感器突触结合蛋白。虽然已经确定突触结合蛋白不能挽救 otoferlin KO 表型,但 otoferlin 体积大且溶解度低,这阻碍了直接进行生化比较,无法确定这两种蛋白质之间的功能差异。为了解决这一挑战,我们开发了一种单分子共定位结合滴定测定法(smCoBRA),可以定量表征哺乳动物细胞裂解物中的全长 otoferlin。使用 smCoBRA,我们发现尽管 otoferlin 和突触结合蛋白都可以结合膜融合 SNARE 蛋白,但只有 otoferlin 与 L 型钙通道 Cav1.3 相互作用,表明这两种突触蛋白之间存在显著差异。此外,发现 otoferlin 能够同时与多个 SNARE 和 Cav1.3 蛋白相互作用,形成异源寡聚体复合物。我们还发现 otoferlin 中的一种致聋错义突变会削弱 otoferlin 和 Cav1.3 之间的结合,这表明这种相互作用的缺陷可能是 otoferlin 相关听力损失的基础。基于我们的结果,我们提出了一个模型,其中 otoferlin 作为一种钙敏感支架蛋白发挥作用,将 SNARE 蛋白定位在钙通道附近,从而使钙内流与膜融合同步。我们的发现还为观察到突触结合蛋白和 otoferlin 不是功能冗余的提供了分子水平的解释。这项研究还验证了一种普遍适用于定量表征大的多价膜蛋白的方法。