Sourisse Jade M, Schunter Celia
The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, , Hong Kong.
R Soc Open Sci. 2024 Jun 12;11(6):240329. doi: 10.1098/rsos.240329. eCollection 2024 Jun.
While ocean acidification (OA) impacts the behaviour of marine organisms, the complexity of neurosystems makes linking behavioural impairments to environmental change difficult. Using a simple model, we exposed to ambient or elevated CO conditions (approx. 1500 µatm) and tested how OA affected the neuromolecular response of the pleural-pedal ganglia and caused tail withdrawal reflex (TWR) impairment. Under OA, relax their tails faster with increased sensorin-A expression, an inhibitor of mechanosensory neurons. We further investigate how OA affects habituation training output, which produced a 'sensitization-like' behaviour and affected vesicle transport and stress response gene expression, revealing an influence of OA on learning. Finally, gabazine did not restore normal behaviour and elicited little molecular response with OA, instead, vesicular transport and cellular signalling link other neurotransmitter processes with TWR impairment. Our study shows the effects of OA on neurological tissue parts that control for behaviour.
虽然海洋酸化(OA)会影响海洋生物的行为,但神经系统的复杂性使得将行为损伤与环境变化联系起来变得困难。我们使用一个简单的模型,将其暴露于环境或升高的二氧化碳条件(约1500微巴)下,测试海洋酸化如何影响胸膜-足神经节的神经分子反应并导致尾部退缩反射(TWR)损伤。在海洋酸化条件下,随着机械感觉神经元抑制剂sensorin-A表达的增加,它们会更快地放松尾巴。我们进一步研究海洋酸化如何影响习惯化训练输出,这产生了一种“致敏样”行为,并影响了囊泡运输和应激反应基因表达,揭示了海洋酸化对学习的影响。最后,加巴喷丁不能恢复正常行为,并且在海洋酸化条件下引起的分子反应很小,相反,囊泡运输和细胞信号传导将其他神经递质过程与尾部退缩反射损伤联系起来。我们的研究表明了海洋酸化对控制行为的神经组织部分的影响。