Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K.
Department of Computer Science, University of Oxford , Oxford, OX1 3QD, U.K.
J Am Chem Soc. 2017 Aug 9;139(31):10677-10686. doi: 10.1021/jacs.7b03611. Epub 2017 Jul 26.
The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H production and the thermodynamic efficiency of H oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [FeS] redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center.
电子进入/退出大肠杆菌氢化酶-1 位点的氧化还原化学被证明在调节生物催化中起着至关重要的作用。受自然启发,我们生成了一种 HyaA-R193L 变体,以破坏在最外层“远端”铁-硫簇的次级配位球中提出的 Arg-His 阳离子-π 相互作用。这使得酶发生重排,提高了 H2 生成的相对速率和 H 氧化催化的热力学效率。基于傅里叶变换交流伏安法测量,我们将这些催化变化与远端 [FeS] 氧化还原电势的变化联系起来,这是一个以前无法通过实验获得的参数。因此,表明金属酶化学可以通过远离催化中心的电子转移位点的第二配位球来调节。