Reeve Holly A, Lauterbach Lars, Lenz Oliver, Vincent Kylie A
Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road, Oxford, OX1 3QR (UK) E-mail:
Institute of Chemistry, Technische Universität Berlin Strasse des 17. Juni 135, 10623, Berlin (Germany).
ChemCatChem. 2015 Nov;7(21):3480-3487. doi: 10.1002/cctc.201500766. Epub 2015 Oct 28.
We describe a new approach to selective H-driven hydrogenation that exploits a sequence of enzymes immobilised on carbon particles. We used a catalyst system that comprised alcohol dehydrogenase, hydrogenase and an NAD reductase on carbon black to demonstrate a greater than 98 % conversion of acetophenone to phenylethanol. Oxidation of H by the hydrogenase provides electrons through the carbon for NAD reduction to recycle the NADH cofactor required by the alcohol dehydrogenase. This biocatalytic system operates over the pH range 6-8 or in un-buffered water, and can function at low concentrations of the cofactor (10 μm NAD) and at H partial pressures below 1 bar. Total turnover numbers >130 000 during acetophenone reduction indicate high enzyme stability, and the immobilised enzymes can be recovered by a simple centrifugation step and re-used several times. This offers a route to convenient, atom-efficient operation of NADH-dependent oxidoreductases for selective hydrogenation catalysis.
我们描述了一种用于选择性H驱动氢化反应的新方法,该方法利用固定在碳颗粒上的一系列酶。我们使用了一种由固定在炭黑上的醇脱氢酶、氢化酶和NAD还原酶组成的催化剂体系,以证明苯乙酮向苯乙醇的转化率大于98%。氢化酶对H的氧化通过碳提供电子以还原NAD,从而循环利用醇脱氢酶所需的NADH辅因子。该生物催化体系在pH值6 - 8的范围内或在未缓冲的水中运行,并且可以在低浓度辅因子(10μm NAD)和低于1巴的H分压下发挥作用。在苯乙酮还原过程中,总周转数>130000,表明酶具有高稳定性,并且固定化酶可以通过简单的离心步骤回收并重复使用几次。这为依赖NADH的氧化还原酶进行选择性氢化催化提供了一条方便、原子经济的操作途径。