Hirama Takashi, Das Raibatak, Yang Yanbo, Ferguson Charles, Won Amy, Yip Christopher M, Kay Jason G, Grinstein Sergio, Parton Robert G, Fairn Gregory D
From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada,; Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada,; Department of Respiratory Medicine, Saitama Medical University, Moroyama, Saitama 3500495, Japan.
Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204.
J Biol Chem. 2017 Aug 25;292(34):14292-14307. doi: 10.1074/jbc.M117.791400. Epub 2017 Jul 11.
Caveolae are bulb-shaped nanodomains of the plasma membrane that are enriched in cholesterol and sphingolipids. They have many physiological functions, including endocytic transport, mechanosensing, and regulation of membrane and lipid transport. Caveola formation relies on integral membrane proteins termed caveolins (Cavs) and the cavin family of peripheral proteins. Both protein families bind anionic phospholipids, but the precise roles of these lipids are unknown. Here, we studied the effects of phosphatidylserine (PtdSer), phosphatidylinositol 4-phosphate (PtdIns4P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P) on caveolar formation and dynamics. Using live-cell, single-particle tracking of GFP-labeled Cav1 and ultrastructural analyses, we compared the effect of PtdSer disruption or phosphoinositide depletion with caveola disassembly caused by cavin1 loss. We found that PtdSer plays a crucial role in both caveola formation and stability. Sequestration or depletion of PtdSer decreased the number of detectable Cav1-GFP puncta and the number of caveolae visualized by electron microscopy. Under PtdSer-limiting conditions, the co-localization of Cav1 and cavin1 was diminished, and cavin1 degradation was increased. Using rapamycin-recruitable phosphatases, we also found that the acute depletion of PtdIns4P and PtdIns(4,5)P has minimal impact on caveola assembly but results in decreased lateral confinement. Finally, we show in a model of phospholipid scrambling, a feature of apoptotic cells, that caveola stability is acutely affected by the scrambling. We conclude that the predominant plasmalemmal anionic lipid PtdSer is essential for proper Cav clustering, caveola formation, and caveola dynamics and that membrane scrambling can perturb caveolar stability.
小窝是质膜上的球状纳米结构域,富含胆固醇和鞘脂。它们具有多种生理功能,包括内吞运输、机械传感以及膜和脂质运输的调节。小窝的形成依赖于称为小窝蛋白(Cavs)的整合膜蛋白和外周蛋白的小窝结合蛋白家族。这两个蛋白家族都结合阴离子磷脂,但这些脂质的确切作用尚不清楚。在这里,我们研究了磷脂酰丝氨酸(PtdSer)、磷脂酰肌醇4-磷酸(PtdIns4P)和磷脂酰肌醇4,5-二磷酸(PtdIns(4,5)P)对小窝形成和动态的影响。使用活细胞、对绿色荧光蛋白标记的Cav1进行单粒子追踪以及超微结构分析,我们将PtdSer破坏或磷酸肌醇消耗的影响与由小窝结合蛋白1缺失引起的小窝解体进行了比较。我们发现PtdSer在小窝形成和稳定性中都起着关键作用。PtdSer的隔离或消耗减少了可检测到的Cav1-绿色荧光蛋白斑点的数量以及通过电子显微镜观察到的小窝数量。在PtdSer限制条件下,Cav1和小窝结合蛋白1的共定位减少,小窝结合蛋白1的降解增加。使用雷帕霉素可招募的磷酸酶,我们还发现PtdIns4P和PtdIns(4,5)P的急性消耗对小窝组装的影响最小,但会导致侧向限制降低。最后,我们在磷脂翻转模型(凋亡细胞的一个特征)中表明,小窝稳定性会受到翻转的急性影响。我们得出结论,主要的质膜阴离子脂质PtdSer对于正确的Cav聚集、小窝形成和小窝动态至关重要,并且膜翻转会扰乱小窝稳定性。