Suppr超能文献

用于研究三能级系统中自旋系统动力学的弗洛凯 - 马格努斯展开和费尔展开的等价性

Equivalence of the Floquet-Magnus and Fer Expansions to Investigate the Dynamics of a Spin System in the Three-Level System.

作者信息

Mananga Eugene Stephane

机构信息

Ph.D. Program in Physics and Ph.D. Program in Chemistry, The Graduate Center, The City University of New York , 365 Fifth Avenue, New York, New York 10016, United States.

Department of Applied Physics, New York University , 6 Metrotech Center, Brooklyn, New York 11201, United States.

出版信息

J Phys Chem A. 2017 Aug 17;121(32):6063-6078. doi: 10.1021/acs.jpca.7b01723. Epub 2017 Aug 2.

Abstract

In this work, we investigated the orders to which the Floquet-Magnus expansion (FME) and Fer expansion (FE) are equivalent or different for the three-level system. Specifically, we performed the third-order calculations of both approaches based on elegant integrations formalism. We present an important close relationship between the Floquet-Magnus and Fer expansions. As the propagator from the FME takes the form of the evolution operator, which removes the constraint of a stroboscopic observation, we appreciated the effects of time-evolution under Hamiltonians with different orders separately. Our work unifies and generalizes existing results of Floquet-Magnus and Fer approaches and delivers illustrations of novel springs that boost previous applications that are based on the classical information. Due to the lack of an unequivocal relationship between the FME and FE, some disagreements between the results produced by these theories will be found, especially in NMR experiments. Our results can find applications in the optimization of NMR spectroscopy, quantum computation, quantum optical control, and coherence in optics and might bear new awareness in fundamental perusals of quantum spin dynamics. This work is an important theoretical and numerical contribution in the general field of spin dynamics.

摘要

在这项工作中,我们研究了对于三能级系统,弗洛凯 - 马格努斯展开(FME)和费尔展开(FE)在何种阶数上是等效的或不同的。具体而言,我们基于精妙的积分形式对这两种方法进行了三阶计算。我们展示了弗洛凯 - 马格努斯展开和费尔展开之间的重要紧密关系。由于FME的传播子采用演化算符的形式,消除了频闪观测的约束,我们分别考察了不同阶哈密顿量下时间演化的影响。我们的工作统一并推广了弗洛凯 - 马格努斯方法和费尔方法的现有结果,并给出了新型弹簧的示例,这些示例推动了基于经典信息的先前应用。由于FME和FE之间缺乏明确的关系,会发现这些理论产生的结果之间存在一些分歧,特别是在核磁共振实验中。我们的结果可应用于核磁共振光谱学、量子计算、量子光学控制以及光学相干性的优化,并且可能在量子自旋动力学的基础研究中带来新的认识。这项工作是自旋动力学一般领域中的一项重要理论和数值贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验