Suppr超能文献

糖尿病视网膜病变、代谢记忆与表观遗传修饰

Diabetic retinopathy, metabolic memory and epigenetic modifications.

作者信息

Kowluru Renu A

机构信息

Kresge Eye Institute, Wayne State University, Detroit, MI, United States.

出版信息

Vision Res. 2017 Oct;139:30-38. doi: 10.1016/j.visres.2017.02.011. Epub 2017 Jul 18.

Abstract

Retinopathy, a sight-threatening disease, remains one of the most feared complications of diabetes. Although hyperglycemia is the main initiator, progression of diabetic retinopathy continues even after re-institution of normal glycemic control in diabetic patients, and the deleterious effects of prior hyperglycemic insult depend on the duration and the severity of this insult, suggesting a 'metabolic memory' phenomenon. Metabolic memory phenomenon is successfully duplicated in the experimental models of diabetic retinopathy. Hyperglycemia, in addition to initiating many other biochemical and functional abnormalities and altering expression of genes associated with them, also increases oxidative stress. Increased production of cytosolic reactive oxygen species dysfunctions the mitochondria, and a compromised antioxidant defense system becomes overwhelmed to neutralize free radicals. With the duration of diabetes extending, mitochondrial DNA (mtDNA) is also damaged, and transcription of mtDNA-encoded genes, important for function of the electron transport chain, is compromised. This fuels into a 'self-propagating' vicious cycle of free radicals, and retinopathy continues to progress. Hyperglycemic insult also affects the enzymatic machinery responsible for epigenetic modifications; these modifications alter gene expression without affecting the DNA sequence. Histones and/or DNA modifications of many enzymes, important in mitochondrial homeostasis, affect their activities and disturb mitochondrial homeostasis. Experimental models have shown that these epigenetic modifications have potential to halt only if normal glycemia is maintained from the day of induction of diabetes (streptozotocin) in rats, but if hyperglycemia is allowed to proceed even for couple months before initiation of normal glycemia, these epigenetic modification resist reversal. Supplementation of a therapy targeted to prevent increased oxidative stress or epigenetic modifications, during the normal glucose phase, which has followed high glucose insult, however, helps ameliorate these abnormalities and prevents the progression of diabetic retinopathy. Thus, without undermining the importance of tight glycemic control for a diabetic patient, supplementation of their 'best possible' glycemic control with such targeted therapies has potential to retard further progression of this blinding disease.

摘要

视网膜病变是一种威胁视力的疾病,仍然是糖尿病最可怕的并发症之一。尽管高血糖是主要诱因,但糖尿病视网膜病变在糖尿病患者恢复正常血糖控制后仍会继续发展,先前高血糖损伤的有害影响取决于这种损伤的持续时间和严重程度,这表明存在“代谢记忆”现象。代谢记忆现象在糖尿病视网膜病变的实验模型中得到了成功复制。高血糖除了引发许多其他生化和功能异常并改变与之相关的基因表达外,还会增加氧化应激。胞质活性氧的产生增加会使线粒体功能失调,而受损的抗氧化防御系统无法有效中和自由基。随着糖尿病病程的延长,线粒体DNA(mtDNA)也会受损,对电子传递链功能至关重要的mtDNA编码基因的转录也会受到影响。这加剧了自由基的“自我传播”恶性循环,视网膜病变继续发展。高血糖损伤还会影响负责表观遗传修饰的酶机制;这些修饰在不影响DNA序列的情况下改变基因表达。许多对线粒体稳态至关重要的酶的组蛋白和/或DNA修饰会影响它们的活性并扰乱线粒体稳态。实验模型表明,只有在大鼠糖尿病诱导(链脲佐菌素)当天开始维持正常血糖,这些表观遗传修饰才有逆转的可能,但如果在开始正常血糖之前即使允许高血糖持续几个月,这些表观遗传修饰也难以逆转。然而,在高糖损伤后的正常血糖阶段,补充旨在预防氧化应激增加或表观遗传修饰的治疗方法,有助于改善这些异常情况并预防糖尿病视网膜病变的进展。因此,在不削弱严格血糖控制对糖尿病患者重要性的前提下,用这种靶向治疗补充他们“尽可能最佳”的血糖控制,有可能延缓这种致盲疾病的进一步发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验