Biology Department, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.
Environ Sci Technol. 2017 Sep 5;51(17):9653-9662. doi: 10.1021/acs.est.7b01414. Epub 2017 Aug 9.
Mercury (Hg) bioavailability to bacteria in marine systems is the first step toward its bioamplification in food webs. These systems exhibit high salinity and ionic strength that will both alter Hg speciation and properties of the bacteria cell walls. The role of Hg speciation on Hg bioavailability in marine systems has not been teased apart from that of ionic strength on cell wall properties, however. We developed and optimized a whole-cell Hg bioreporter capable of functioning under aerobic and anaerobic conditions and exhibiting no physiological limitations of signal production to changes in ionic strength. We show that ionic strength controls the bioavailability of Hg species, regardless of their charge, possibly by altering properties of the bacterial cell wall. The unexpected anaerobic bioavailability of negatively charged halocomplexes may help explain Hg methylation in marine systems such as the oxygen-deficient zone in the oceanic water column, sea ice or polar snow.
汞(Hg)在海洋系统中对细菌的生物可利用性是其在食物网中生物放大的第一步。这些系统具有高盐度和离子强度,这两者都会改变 Hg 的形态和细菌细胞壁的特性。然而,Hg 形态对海洋系统中 Hg 生物可利用性的作用尚未与离子强度对细胞壁特性的作用区分开来。我们开发并优化了一种全细胞 Hg 生物报告器,它能够在好氧和厌氧条件下运行,并且在离子强度发生变化时不会对信号产生产生任何生理限制。我们表明,离子强度控制着 Hg 物种的生物可利用性,而与它们的电荷无关,这可能是通过改变细菌细胞壁的特性来实现的。带负电荷的卤复合物在厌氧条件下具有意想不到的生物可利用性,这可能有助于解释海洋系统中的 Hg 甲基化作用,例如海洋水柱中的缺氧区、海冰或极地雪。