Stenzler Benjamin R, Gaudet Jessica, Poulain Alexandre J
Department of Biology, University of Ottawa.
Department of Biology, University of Ottawa;
J Vis Exp. 2018 Dec 17(142). doi: 10.3791/58324.
Mercury (Hg) bioavailability to microbes is a key step to toxic Hg biomagnification in food webs. Cadmium (Cd) transformations and bioavailability to bacteria control the amount that will accumulate in staple food crops. The bioavailability of these metals is dependent on their speciation in solution, but more particularly under anoxic conditions where Hg is methylated to toxic monomethylmercury (MeHg) and Cd persists in the rhizosphere. Whole-cell microbial biosensors give a quantifiable signal when a metal enters the cytosol and therefore are useful tools to assess metal bioavailability. Unfortunately, most biosensing efforts have so far been constrained to oxic environments due to the limited ability of existing reporter proteins to function in the absence of oxygen. In this study, we present our effort to develop and optimize a whole-cell biosensor assay capable of functioning anaerobically that can detect metals under anoxic condition in quasi-real time and within hours. We describe how the biosensor can help assess how chemical variables relevant to the environmental cycling of metals affect their bioavailability. The following protocol includes methods to (1) prepare Hg and Cd standards under anoxic conditions, (2) prepare the biosensor in the absence of oxygen, (3) design and execute an experiment to determine how a series of variable affects Hg or Cd bioavailability, and (4) to quantify and interpret biosensor data. We show the linear ranges of the biosensors and provide examples showing the method's ability to distinguish between metal bioavailability and toxicity by utilizing both metal-inducible and constitutive strains.
汞(Hg)对微生物的生物可利用性是食物网中有毒汞生物放大的关键步骤。镉(Cd)的转化及其对细菌的生物可利用性控制着主食作物中镉的积累量。这些金属的生物可利用性取决于它们在溶液中的形态,特别是在缺氧条件下,汞会甲基化为有毒的一甲基汞(MeHg),而镉则在根际中持续存在。当金属进入细胞质时,全细胞微生物生物传感器会给出可量化的信号,因此是评估金属生物可利用性的有用工具。不幸的是,由于现有报告蛋白在无氧条件下功能有限,目前大多数生物传感研究都局限于有氧环境。在本研究中,我们致力于开发和优化一种能够在厌氧条件下发挥作用的全细胞生物传感器检测方法,该方法能够在缺氧条件下近实时且在数小时内检测金属。我们描述了这种生物传感器如何有助于评估与金属环境循环相关的化学变量如何影响其生物可利用性。以下方案包括以下方法:(1)在缺氧条件下制备汞和镉标准溶液,(2)在无氧条件下制备生物传感器,(3)设计并进行实验以确定一系列变量如何影响汞或镉的生物可利用性,以及(4)量化和解释生物传感器数据。我们展示了生物传感器的线性范围,并提供了示例,表明该方法通过利用金属诱导型和组成型菌株来区分金属生物可利用性和毒性的能力。