Suppr超能文献

用于猪生长曲线SNP标记估计的正则化分位数回归

Regularized quantile regression for SNP marker estimation of pig growth curves.

作者信息

Barroso L M A, Nascimento M, Nascimento A C C, Silva F F, Serão N V L, Cruz C D, Resende M D V, Silva F L, Azevedo C F, Lopes P S, Guimarães S E F

机构信息

Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil.

Department of Animal Science, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil.

出版信息

J Anim Sci Biotechnol. 2017 Jul 11;8:59. doi: 10.1186/s40104-017-0187-z. eCollection 2017.

Abstract

BACKGROUND

Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time (genomic growth curve) under different quantiles (levels).

RESULTS

The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483) for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others.

CONCLUSIONS

RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves.

摘要

背景

基因组生长曲线通常仅根据群体均值来定义;分位数回归(QR)是一种尚未在生长曲线的基因组分析中得到应用的替代方法。这种方法能够估计在感兴趣变量的不同水平上的标记效应。我们旨在提出并评估一种用于猪生长曲线SNP标记效应估计的正则化分位数回归方法,同时识别最相关标记的染色体区域,并估计不同分位数(水平)下随时间变化的遗传个体体重轨迹(基因组生长曲线)。

结果

正则化分位数回归(RQR)能够在不同的感兴趣水平(分位数)上发现最相关的标记,从而识别QTL区域。我们发现相同的相关标记同时影响不同的生长曲线参数(成熟体重和成熟率):RQR(0.2)有两个(ALGA0096701和ALGA0029483),RQR(0.5)有一个(ALGA0096701),RQR(0.8)有一个(ALGA0003761)。获得了三条平均基因组生长曲线,其行为由分位数0.2处的曲线解释,该曲线与其他曲线不同。

结论

RQR允许构建基因组生长曲线,这是识别和选择最适合育种的动物的关键。此外所提出的模型使我们能够在不同的感兴趣水平(分位数)上找到每个性状(生长曲线参数估计)最相关的标记及其各自的染色体位置(识别猪生长曲线的新QTL区域)。在旨在改变猪生长曲线形状的标记辅助选择背景下,可以利用这些标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f72/5504997/8e588dae9fa4/40104_2017_187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验