Liu Yufeng, Wu Yichao
Department of Statistics and OR, Carolina Center for Genome Sciences, University of North Carolina, 354 Hanes Hall, CB 3260, Chapel Hill, NC 27599, USA.
J Nonparametr Stat. 2011 Jun;23(2):415-437. doi: 10.1080/10485252.2010.537336.
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation.
分位数回归(QR)是一种用于研究响应变量与协变量之间关系的非常有用的统计工具。对于许多应用而言,人们通常需要估计给定协变量时响应变量的多个条件分位数函数。虽然可以分别估计多个分位数,但同时估计它们会非常有意义。同时估计的一个优点是多个分位数可以相互共享优势,从而比单独估计的分位数函数获得更高的估计精度。联合估计的另一个重要优点是纳入QR函数的同时不交叉约束的可行性。在本文中,我们提出了一种新的基于核的多元QR估计技术,即同时不交叉分位数回归(SNQR)。我们使用QR函数的核表示,并对核系数施加约束以避免交叉。我们考虑了无正则化和正则化的SNQR技术。我们推导了线性SNQR的渐近正态性和稀疏线性SNQR的神谕性质等渐近性质。我们的数值结果表明,我们的SNQR相对于原始的单个QR估计具有竞争性能。