Suppr超能文献

使用核约束的同步多重非交叉分位数回归估计

Simultaneous multiple non-crossing quantile regression estimation using kernel constraints.

作者信息

Liu Yufeng, Wu Yichao

机构信息

Department of Statistics and OR, Carolina Center for Genome Sciences, University of North Carolina, 354 Hanes Hall, CB 3260, Chapel Hill, NC 27599, USA.

出版信息

J Nonparametr Stat. 2011 Jun;23(2):415-437. doi: 10.1080/10485252.2010.537336.

Abstract

Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation.

摘要

分位数回归(QR)是一种用于研究响应变量与协变量之间关系的非常有用的统计工具。对于许多应用而言,人们通常需要估计给定协变量时响应变量的多个条件分位数函数。虽然可以分别估计多个分位数,但同时估计它们会非常有意义。同时估计的一个优点是多个分位数可以相互共享优势,从而比单独估计的分位数函数获得更高的估计精度。联合估计的另一个重要优点是纳入QR函数的同时不交叉约束的可行性。在本文中,我们提出了一种新的基于核的多元QR估计技术,即同时不交叉分位数回归(SNQR)。我们使用QR函数的核表示,并对核系数施加约束以避免交叉。我们考虑了无正则化和正则化的SNQR技术。我们推导了线性SNQR的渐近正态性和稀疏线性SNQR的神谕性质等渐近性质。我们的数值结果表明,我们的SNQR相对于原始的单个QR估计具有竞争性能。

相似文献

2
Non-crossing weighted kernel quantile regression with right censored data.带右删失数据的非交叉加权核分位数回归
Lifetime Data Anal. 2016 Jan;22(1):100-21. doi: 10.1007/s10985-014-9314-8. Epub 2014 Dec 16.
4
An Algorithm of Nonparametric Quantile Regression.一种非参数分位数回归算法。
J Stat Theory Pract. 2023;17(2):32. doi: 10.1007/s42519-023-00325-8. Epub 2023 Mar 29.
6
A nonparametric approach for quantile regression.一种用于分位数回归的非参数方法。
J Stat Distrib Appl. 2018;5(1):3. doi: 10.1186/s40488-018-0084-9. Epub 2018 Jul 18.
7
Nonlinear parametric quantile models.非线性参数分位数模型。
Stat Methods Med Res. 2020 Dec;29(12):3757-3769. doi: 10.1177/0962280220941159. Epub 2020 Jul 19.
8
Interquantile Shrinkage in Regression Models.回归模型中的四分位数间距收缩
J Comput Graph Stat. 2013;22(4). doi: 10.1080/10618600.2012.707454.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验