Suppr超能文献

使用微观模拟模型评估不同程度遵守肺癌筛查建议的影响。

Evaluating the impact of varied compliance to lung cancer screening recommendations using a microsimulation model.

作者信息

Han Summer S, Erdogan S Ayca, Toumazis Iakovos, Leung Ann, Plevritis Sylvia K

机构信息

Quantitative Sciences Unit, Stanford Center for Biomedical Research (BMIR), Neurosurgery and Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Department of Industrial and Systems Engineering, San Jose State University, San Jose, CA, USA.

出版信息

Cancer Causes Control. 2017 Sep;28(9):947-958. doi: 10.1007/s10552-017-0907-x. Epub 2017 Jul 12.

Abstract

BACKGROUND

The US preventive services task force (USPSTF) recently recommended that individuals aged 55-80 with heavy smoking history be annually screened by low-dose computed tomography (LDCT), thereby extending the stopping age from 74 to 80 compared to the national lung screening trial (NLST) entry criterion. This decision was made partly with model-based analyses from cancer intervention and surveillance modeling network (CISNET), which assumed perfect compliance to screening.

METHODS

As part of CISNET, we developed a microsimulation model for lung cancer (LC) screening and calibrated and validated it using data from NLST and the prostate, lung, colorectal, and ovarian cancer screening trial (PLCO), respectively. We evaluated population-level outcomes of the lifetime screening program recommended by the USPSTF by varying screening compliance levels.

RESULTS

Validation using PLCO shows that our model reproduces observed PLCO outcomes, predicting 884 LC cases [Expected(E)/Observed(O) = 0.99; CI 0.92-1.06] and 563 LC deaths (E/O = 0.94 CI 0.87-1.03) in the screening arm that has an average compliance rate of 87.9% over four annual screening rounds. We predict that perfect compliance to the USPSTF recommendation saves 501 LC deaths per 100,000 persons in the 1950 U.S. birth cohort; however, assuming that compliance behaviors extrapolated and varied from PLCO reduces the number of LC deaths avoided to 258, 230, and 175 as the average compliance rate over 26 annual screening rounds changes from 100 to 46, 39, and 29%, respectively.

CONCLUSION

The implementation of the USPSTF recommendation is expected to contribute to a reduction in LC deaths, but the magnitude of the reduction will likely be heavily influenced by screening compliance.

摘要

背景

美国预防服务工作组(USPSTF)最近建议,有重度吸烟史的55至80岁个体应每年接受低剂量计算机断层扫描(LDCT)筛查,因此与国家肺癌筛查试验(NLST)的入选标准相比,筛查截止年龄从74岁延长至80岁。这一决定部分基于癌症干预和监测建模网络(CISNET)的基于模型的分析,该分析假设对筛查完全依从。

方法

作为CISNET的一部分,我们开发了一个用于肺癌(LC)筛查的微观模拟模型,并分别使用NLST和前列腺、肺、结肠和卵巢癌筛查试验(PLCO)的数据对其进行校准和验证。我们通过改变筛查依从水平来评估USPSTF推荐的终生筛查计划的人群水平结果。

结果

使用PLCO进行验证表明,我们的模型再现了观察到的PLCO结果,在四轮年度筛查中平均依从率为87.9%的筛查组中预测了884例LC病例[预期(E)/观察到(O)=0.99;可信区间0.92 - 1.06]和563例LC死亡(E/O = 0.94,可信区间0.87 - 1.03)。我们预测,完全依从USPSTF的建议可使每10万名1950年出生的美国队列人群中避免501例LC死亡;然而,假设从PLCO推断并变化的依从行为,随着26轮年度筛查的平均依从率分别从100%变为46%、39%和29%,避免的LC死亡人数减少到258例、230例和175例。

结论

预计实施USPSTF的建议将有助于降低LC死亡人数,但降低幅度可能会受到筛查依从性的严重影响。

相似文献

1
Evaluating the impact of varied compliance to lung cancer screening recommendations using a microsimulation model.
Cancer Causes Control. 2017 Sep;28(9):947-958. doi: 10.1007/s10552-017-0907-x. Epub 2017 Jul 12.
2
Cost-Effectiveness Analysis of Lung Cancer Screening in the United States: A Comparative Modeling Study.
Ann Intern Med. 2019 Dec 3;171(11):796-804. doi: 10.7326/M19-0322. Epub 2019 Nov 5.
3
6
The impact of overdiagnosis on the selection of efficient lung cancer screening strategies.
Int J Cancer. 2017 Jun 1;140(11):2436-2443. doi: 10.1002/ijc.30602.
7
Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts.
PLoS Med. 2014 Dec 2;11(12):e1001764. doi: 10.1371/journal.pmed.1001764. eCollection 2014 Dec.
10

引用本文的文献

1
Cost-effectiveness of low-dose CT screening for non-smokers with a first-degree relative history of lung cancer.
BMC Public Health. 2025 May 15;25(1):1783. doi: 10.1186/s12889-025-22977-w.
2
Natural history models for lung Cancer: A scoping review.
Lung Cancer. 2025 May;203:108495. doi: 10.1016/j.lungcan.2025.108495. Epub 2025 Mar 26.
3
Adherence to Annual Lung Cancer Screening and Rates of Cancer Diagnosis.
JAMA Netw Open. 2025 Mar 3;8(3):e250942. doi: 10.1001/jamanetworkopen.2025.0942.
4
Dismal adherence to lung cancer screening in a diverse urban population.
J Thorac Cardiovasc Surg. 2025 Jul;170(1):46-51.e1. doi: 10.1016/j.jtcvs.2024.12.007. Epub 2024 Dec 13.
5
The Impact of Model Assumptions on Personalized Lung Cancer Screening Recommendations.
Med Decis Making. 2024 Jul;44(5):497-511. doi: 10.1177/0272989X241249182. Epub 2024 May 13.
9
Risk Model-Based Lung Cancer Screening : A Cost-Effectiveness Analysis.
Ann Intern Med. 2023 Mar;176(3):320-332. doi: 10.7326/M22-2216. Epub 2023 Feb 7.
10
Receipt of Recommended Follow-up Care After a Positive Lung Cancer Screening Examination.
JAMA Netw Open. 2022 Nov 1;5(11):e2240403. doi: 10.1001/jamanetworkopen.2022.40403.

本文引用的文献

1
The impact of overdiagnosis on the selection of efficient lung cancer screening strategies.
Int J Cancer. 2017 Jun 1;140(11):2436-2443. doi: 10.1002/ijc.30602.
4
Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement.
Ann Intern Med. 2014 Mar 4;160(5):330-8. doi: 10.7326/M13-2771.
5
Chapter 4: Development of the counterfactual smoking histories used to assess the effects of tobacco control.
Risk Anal. 2012 Jul;32 Suppl 1(Suppl 1):S39-50. doi: 10.1111/j.1539-6924.2011.01759.x.
6
Comparing the benefits of screening for breast cancer and lung cancer using a novel natural history model.
Cancer Causes Control. 2012 Jan;23(1):175-85. doi: 10.1007/s10552-011-9866-9. Epub 2011 Nov 25.
8
Cost-effectiveness of computed tomography screening for lung cancer in the United States.
J Thorac Oncol. 2011 Nov;6(11):1841-8. doi: 10.1097/JTO.0b013e31822e59b3.
9
Reduced lung-cancer mortality with low-dose computed tomographic screening.
N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验