Wulff Thomas F, Argüello Rafael J, Molina Jordàn Marc, Roura Frigolé Helena, Hauquier Glenn, Filonava Liudmila, Camacho Noelia, Gatti Evelina, Pierre Philippe, Ribas de Pouplana Lluís, Torres Adrian G
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.
Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université U2M, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
Biochemistry. 2017 Aug 8;56(31):4029-4038. doi: 10.1021/acs.biochem.7b00324. Epub 2017 Jul 27.
Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.
转运RNA(tRNA)是修饰程度最高的RNA种类之一。转录后tRNA修饰(ptRM)在调节tRNA结构和功能方面发挥着重要作用,并且越来越多地与人类生理和疾病相关联。检测ptRM通常具有挑战性、成本高且费力。限制性片段长度多态性(RFLP)分析研究限制酶处理后DNA的切割模式,并已用于定性检测mRNA上的修饰碱基。已知当tRNA逆转录时,一些ptRM会诱导特定且可重复的碱基“突变”。例如,由腺苷脱氨产生的次黄嘌呤,当含次黄嘌呤的tRNA逆转录、通过聚合酶链反应(PCR)扩增并测序时,会被检测为鸟嘌呤。由于逆转录反应而在逆转录PCR扩增子上产生的依赖于ptRM的碱基变化可能会产生或消除核酸内切酶限制位点。到目前为止,尚未研究RFLP用于检测和/或定量ptRM的适用性。在这里,我们表明通过RFLP可以在不同tRNA类型的特定位点检测到不同的ptRM。对于所研究的示例,我们表明这种方法可以可靠地估计样品的修饰状态,这一特性在研究tRNA修饰在基因表达中的调节作用时可能会很有用。