Center for Molecular Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
Light Microscopy Core, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
Nat Protoc. 2017 Aug;12(8):1576-1587. doi: 10.1038/nprot.2017.060. Epub 2017 Jul 13.
Mitophagy is a cellular process that selectively removes damaged, old or dysfunctional mitochondria. Defective mitophagy is thought to contribute to normal aging and to various neurodegenerative and cardiovascular diseases. Previous methods used to detect mitophagy in vivo were cumbersome, insensitive and difficult to quantify. We created a transgenic mouse model that expresses the pH-dependent fluorescent protein mt-Keima in order to more readily assess mitophagy. Keima is a pH-sensitive, dual-excitation ratiometric fluorescent protein that also exhibits resistance to lysosomal proteases. At the physiological pH of the mitochondria (pH 8.0), the shorter-wavelength excitation predominates. Within the acidic lysosome (pH 4.5) after mitophagy, mt-Keima undergoes a gradual shift to longer-wavelength excitation. In this protocol, we describe how to monitor mitophagic flux in living cells over an 18-h time frame, as well as how to quantify mitophagy using the mt-Keima probe. This protocol also describes how to use confocal microscopy to visualize mitophagy in living tissues obtained from mt-Keima transgenic mice. With this protocol, the mt-Keima probe can reliably be imaged within the first 60 min after tissue collection. We also describe how to apply mt-Keima with stimulated emission depletion (STED) microscopy, which can potentially provide substantially higher-resolution images. Typically, the approximate time frame for time-lapse fluorescence imaging of mt-Keima is 20 h for living cells. For confocal analysis of tissue from an mt-Keima mouse, the whole procedure generally takes no longer than 60 min, and the STED imaging usually takes <2 h.
自噬是一种细胞过程,它可以选择性地去除受损、老化或功能失调的线粒体。人们认为,自噬功能缺陷会导致正常衰老,并导致各种神经退行性疾病和心血管疾病。以前用于体内检测自噬的方法繁琐、不敏感且难以定量。我们创建了一个表达 pH 依赖性荧光蛋白 mt-Keima 的转基因小鼠模型,以便更轻松地评估自噬。Keima 是一种 pH 敏感的双激发比率荧光蛋白,还具有抵抗溶酶体蛋白酶的特性。在线粒体的生理 pH(pH 8.0)下,较短波长的激发占主导地位。在自噬后酸性溶酶体(pH 4.5)中,mt-Keima 逐渐向较长波长的激发转变。在本方案中,我们描述了如何在 18 小时的时间范围内监测活细胞中的自噬通量,以及如何使用 mt-Keima 探针定量自噬。该方案还描述了如何使用共聚焦显微镜观察来自 mt-Keima 转基因小鼠的活体组织中的自噬。使用该方案,mt-Keima 探针可以在组织采集后的最初 60 分钟内可靠成像。我们还描述了如何将 mt-Keima 与受激发射损耗(STED)显微镜结合使用,这可能会提供更高分辨率的图像。通常,活细胞中 mt-Keima 荧光成像的实时拍摄时间约为 20 小时。对于 mt-Keima 小鼠组织的共聚焦分析,整个过程通常不超过 60 分钟,而 STED 成像通常耗时<2 小时。