Suppr超能文献

结合全球土地覆盖数据集量化拉丁美洲农业向森林的扩张:局限性与挑战。

Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges.

作者信息

Pendrill Florence, Persson U Martin

机构信息

Division of Physical Resource Theory, Department of Space, Earth & Environment, Chalmers University of Technology, Göteborg, Sweden.

出版信息

PLoS One. 2017 Jul 13;12(7):e0181202. doi: 10.1371/journal.pone.0181202. eCollection 2017.

Abstract

While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001-2011, by combining two "state-of-the-art" global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010's Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010's Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to 60%) of the role of pasture in replacing forest. Second, a large share (33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for deriving accurate quantifications of land cover following forest loss.

摘要

虽然我们知道热带地区的森林砍伐日益受到商业农业的推动,但大多数热带国家仍然缺乏对牧场和农田扩张在导致森林丧失方面的相对重要性的近期和空间明确的评估。在此,我们通过结合两个“最先进的”全球数据集(全球森林变化森林丧失数据和GlobeLand30 - 2010土地覆盖数据),对2001 - 2011年期间拉丁美洲耕地和草地以森林为代价的扩张程度进行了空间明确的量化。我们进一步评估了这样做的一些局限性和挑战。我们发现这种方法确实捕捉到了森林砍伐后土地覆盖的一些主要模式,GlobeLand30 - 2010的草地类别(我们将其解释为牧场)是拉丁美洲取代森林的最常见土地覆盖类型。然而,我们的分析也揭示了将这些土地覆盖数据集用于量化牧场和农田向森林扩张的一些主要局限性。首先,在没有谨慎考虑的情况下,不应简单地将GlobeLand30 - 2010的耕地和草地类别分别一对一地转换为农田和牧场,因为GlobeLand30 - 2010将其耕地定义为包括一些牧场。与巴西亚马逊地区的TerraClass数据集以及先前文献的比较表明,GlobeLand30 - 2010中的耕地包括大量的牧场和其他植被(例如在巴拉圭和巴西亚马逊地区)。这进一步表明,这里采用的方法通常会导致对牧场在取代森林中作用的低估(高达约60%)。其次,根据GlobeLand30 - 2010,全球森林变化森林丧失中很大一部分(约33%)仍然是森林,并且我们的分析表明,合并后的数据集的准确性,特别是对于土地覆盖异质和/或小规模森林丧失的地区,对于得出森林丧失后土地覆盖的准确量化仍然太差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c35b/5509295/684c88e73c16/pone.0181202.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验