Suppr超能文献

使用多个参考数据集的综合泛热带生物量地图。

An integrated pan-tropical biomass map using multiple reference datasets.

作者信息

Avitabile Valerio, Herold Martin, Heuvelink Gerard B M, Lewis Simon L, Phillips Oliver L, Asner Gregory P, Armston John, Ashton Peter S, Banin Lindsay, Bayol Nicolas, Berry Nicholas J, Boeckx Pascal, de Jong Bernardus H J, DeVries Ben, Girardin Cecile A J, Kearsley Elizabeth, Lindsell Jeremy A, Lopez-Gonzalez Gabriela, Lucas Richard, Malhi Yadvinder, Morel Alexandra, Mitchard Edward T A, Nagy Laszlo, Qie Lan, Quinones Marcela J, Ryan Casey M, Ferry Slik J W, Sunderland Terry, Laurin Gaia Vaglio, Gatti Roberto Cazzolla, Valentini Riccardo, Verbeeck Hans, Wijaya Arief, Willcock Simon

机构信息

Centre for Geo-Information, Wageningen University, Droevendaalsesteeg 3, 6708PB, Wageningen, The Netherlands.

School of Geography, University of Leeds, University Road, Leeds, West Yorkshire, LS2 9JZ, UK.

出版信息

Glob Chang Biol. 2016 Apr;22(4):1406-20. doi: 10.1111/gcb.13139. Epub 2016 Jan 10.

Abstract

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.

摘要

我们将两个现有的植被地上生物量(AGB)数据集(《美国国家科学院院刊》,108卷,2011年,9899页;《自然气候变化》,2卷,2012年,182页)合并为一个1公里分辨率的泛热带AGB地图,使用了一个独立的实地观测参考数据集以及经过局部校准的高分辨率生物量地图,并将其协调并上采样至14477个1公里的AGB估计值。我们的数据融合方法采用偏差消除和加权线性平均,将参考数据所指示的生物量模式纳入并进行空间化处理。该方法在输入(萨奇和巴奇尼)地图具有均匀误差模式的区域(地层)中独立应用,这些误差模式是根据参考数据和其他协变量估算出来的。基于融合后的地图,我们估算出热带地区(北纬23.4度至南纬23.4度)的AGB储量为375Pg干质量,比萨奇和巴奇尼的估计值低9%至18%。融合后的地图还显示出大面积区域内AGB的不同空间模式,刚果盆地、东亚马逊和东南亚的茂密森林地区AGB密度较高,而中美洲和非洲大部分干旱植被地区的值低于任何一个输入地图。基于融合过程中未使用的参考数据集的2118个估计值进行的验证表明,融合后的地图的均方根误差(RMSE)比输入地图低15%至21%,最重要的是,其估计几乎无偏差(平均偏差为5Mg干质量·公顷-1,而输入地图分别为21和28Mg·公顷-1)。这种融合方法可应用于任何尺度,包括与政策相关的国家层面,在该层面上,通过将现有的区域生物量地图作为输入地图以及额外的、特定国家的参考数据集进行整合,它可以提供改进后的生物量估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验