Suppr超能文献

在金属有机骨架的纳米空间限制下合成的高效氧还原反应电催化剂。

Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal-Organic Framework.

机构信息

State Key Lab of Organic-Inorganic Composites, College of Chemical Engineering, College of Energy, Beijing University of Chemical Technology , Beijing 100029, P. R. China.

Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

出版信息

ACS Nano. 2017 Aug 22;11(8):8379-8386. doi: 10.1021/acsnano.7b03807. Epub 2017 Jul 18.

Abstract

The output energy capacity of green electrochemical devices, e.g., fuel cells, depends strongly on the sluggish oxygen reduction reaction (ORR), which requires catalysts. One of the desired features for highly efficient ORR electrocatalytic materials is the richness of well-defined activate sites. Herein, we developed a facile approach to prepare highly efficient nonprecious metal and nitrogen-doped carbon-based ORR catalysts based on covalent organic polymers (COPs) synthesized in situ in the nanoconfined space of highly ordered metal organic frameworks (MOFs). The MOF templet ensured the developed electrocatalysts possess a high surface area with homogeneously distributed small metal/nitrogen active sites, as confirmed by X-ray absorption fine structure measurements and first-principles calculations, leading to highly efficient ORR electrocatalytic activity. Notably, the developed COP-TPP(Fe)@MOF-900 exhibits a 16 mV positive half-wave potential compared with the benchmarked Pt/C.

摘要

绿色电化学器件(例如燃料电池)的输出能量能力强烈依赖于缓慢的氧还原反应(ORR),这需要催化剂。高效 ORR 电催化材料的一个理想特征是具有丰富的明确定义的活性位点。在此,我们开发了一种简便的方法,基于原位合成的共价有机聚合物(COPs)在高度有序的金属有机骨架(MOFs)的纳米受限空间中制备高效的非贵金属和氮掺杂碳基 ORR 催化剂。MOF 模板确保所开发的电催化剂具有高表面积和均匀分布的小金属/氮活性位点,这一点通过 X 射线吸收精细结构测量和第一性原理计算得到了证实,从而实现了高效的 ORR 电催化活性。值得注意的是,与基准 Pt/C 相比,所开发的 COP-TPP(Fe)@MOF-900 的半波正电位正移了 16 mV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验