Suppr超能文献

花生茎腐病真菌 Athel ia rolfsii 的全基因组序列草图揭示了其致病性和毒性的遗传结构。

Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence.

机构信息

Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India.

Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India.

出版信息

Sci Rep. 2017 Jul 13;7(1):5299. doi: 10.1038/s41598-017-05478-8.

Abstract

Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.

摘要

落花生(Arachis hypogaea L.)是一种重要的油料作物,由于真菌引起的茎腐病,其生产受到重大生物限制,导致 Athelia rolfsii 造成 25-80%的生产力损失。由于这种真菌的化学和生物防治策略不是很有效,因此基因组测序可以揭示毒力和致病性相关基因,以更好地了解宿主-寄生虫相互作用。我们报告了约 73 Mb 的 Athelia rolfsii 基因组的草案组装,该基因组有 8919 个重叠群。注释分析显示了 16830 个基因,这些基因与杀菌剂抗性、毒力和致病性有关,同时还涉及假定的效应子和致死基因。分泌组分析显示 CAZY 基因代表 1085 个酶基因、糖苷水解酶、碳水化合物酯酶、碳水化合物结合模块、辅助活性、糖基转移酶和多糖裂解酶。重复分析显示了 11171 个 SSR、LTR、GYPSY 和 COPIA 元件。与其他现有的子囊菌基因组的比较分析预测了 WD40、CYP450、PKinase 和 ABC 转运蛋白的保守结构域家族,揭示了致病性和毒力进化的见解。这项研究将有助于在分子水平上了解致病性和毒力,并开发新的防治策略。这种方法在基于基因组的茎腐病管理解决方案的努力中是必不可少的,这将导致世界热带地区花生作物的生产力得到提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd8a/5509663/f8ec8a7c2b79/41598_2017_5478_Fig1_HTML.jpg

相似文献

5
Whole-Genome Sequencing and Comparative Genome Analysis of Fusarium solani-melongenae Causing Fusarium Root and Stem Rot in Sweetpotatoes.
Microbiol Spectr. 2022 Aug 31;10(4):e0068322. doi: 10.1128/spectrum.00683-22. Epub 2022 Jul 7.
8
Genetic, Phenotypic, and Pathogenic Variation Among , the Causal Agent of Peanut Stem Rot in China.
Plant Dis. 2022 Oct;106(10):2722-2729. doi: 10.1094/PDIS-08-21-1681-RE. Epub 2022 Sep 12.

引用本文的文献

1
IMA GENOME - F20 A draft genome assembly of , , , , and genomic resources for and .
IMA Fungus. 2025 Feb 17;16:e141732. doi: 10.3897/imafungus.16.141732. eCollection 2025.
3
Ca affects the hyphal differentiation to sclerotia formation of .
Microbiol Spectr. 2024 Jun 4;12(6):e0020024. doi: 10.1128/spectrum.00200-24. Epub 2024 Apr 30.
4
lipopeptide-mediated biocontrol of peanut stem rot caused by .
Front Plant Sci. 2023 Feb 20;14:1069971. doi: 10.3389/fpls.2023.1069971. eCollection 2023.
5
Phenotypic analysis and genome sequence of strain Y5, the causal agent of tobacco pole rot.
Front Microbiol. 2023 Jan 4;13:1031023. doi: 10.3389/fmicb.2022.1031023. eCollection 2022.
6
Genome-wide analysis of genes in and functional characterization of in jasmonate-mediated immunity to .
Front Plant Sci. 2022 Aug 2;13:956210. doi: 10.3389/fpls.2022.956210. eCollection 2022.
8
Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of .
Front Plant Sci. 2022 Jan 5;12:752683. doi: 10.3389/fpls.2021.752683. eCollection 2021.
10
JA signal-mediated immunity of Dendrobium catenatum to necrotrophic Southern Blight pathogen.
BMC Plant Biol. 2021 Aug 6;21(1):360. doi: 10.1186/s12870-021-03134-y.

本文引用的文献

1
The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.
Front Plant Sci. 2016 Aug 10;7:984. doi: 10.3389/fpls.2016.00984. eCollection 2016.
2
Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.
Angew Chem Int Ed Engl. 2016 Jul 18;55(30):8748-51. doi: 10.1002/anie.201603782. Epub 2016 Jun 13.
3
OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes.
Genome Biol Evol. 2016 Jul 3;8(6):2044-64. doi: 10.1093/gbe/evw121.
8
OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species.
Nucleic Acids Res. 2015 Jul 1;43(W1):W78-84. doi: 10.1093/nar/gkv487. Epub 2015 May 11.
9
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43. doi: 10.1093/nar/gkv437. Epub 2015 May 6.
10
The diversity of fungal genome.
Biol Proced Online. 2015 Apr 2;17:8. doi: 10.1186/s12575-015-0020-z. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验