Suppr超能文献

烟草杆腐病菌株Y5的表型分析与基因组序列

Phenotypic analysis and genome sequence of strain Y5, the causal agent of tobacco pole rot.

作者信息

Li Zhen, Shi Cai-Hua, Huang Yang, Wang Han-Cheng, Li Wen-Hong, Cai Liu-Ti

机构信息

MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China.

Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China.

出版信息

Front Microbiol. 2023 Jan 4;13:1031023. doi: 10.3389/fmicb.2022.1031023. eCollection 2022.

Abstract

is a destructive pathogen that frequently causes tobacco pole rot in curing chambers. Phenotypic characterization of the pathogen was conducted to provide basic biological and pathological information using Biolog Phenotype MicroArray (PM). In addition, the Y5 strain of was sequenced using Illumina HiSeq and Pacific Biosciences (PacBio) technologies. Using PM plates 1-8, 758 growth conditions were tested. Results indicated that could metabolize 54.21% of tested carbon sources, 86.84% of nitrogen sources, 100% of sulfur sources, and 98.31% of phosphorus sources. About 37 carbon compounds, including D-xylose, N-acetyl-D-glucosamine, D-sorbitol, β-methyl-D-glucoside, D-galactose, L-arabinose, and D-cellobiose, significantly supported the growth of the pathogen. PM 3 indicated the active nitrogen sources, including Gly-Asn, Ala-Asp., Ala-Gln, and uric acid. PM 6-8 showed 285 different nitrogen pathways, indicating that different combinations of different amino acids support the growth of the pathogen. Genome sequencing results showed that the Y5 strain had raw data assembled into 2,271 Mbp with an N50 value of 10,563 bp. A genome sequence of 50.3 Mb was polished and assembled into 53 contigs with an N50 length of 1,785,794 bp, maximum contig length of 3,223,184 bp, and a sum of contig lengths of 51,182,778 bp. A total of 12,680 protein-coding genes were predicted using the Nonredundant, Gene Ontology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and SWISS-PROT databases. The genome sequence and annotation resources of provided a reference for studying its biological characteristics, trait-specific genes, pathogen-host interaction, pathogen evolution, and population genetic diversity. The phenomics and genome of will provide insights into microfungal biology, pathogen evolution, and the genetic diversity of epidemics.

摘要

是一种具有破坏性的病原体,经常在烘烤房引起烟草杆腐病。利用Biolog表型微阵列(PM)对该病原体进行表型特征分析,以提供基本的生物学和病理学信息。此外,使用Illumina HiSeq和太平洋生物科学公司(PacBio)技术对该病原体的Y5菌株进行了测序。使用PM平板1 - 8,测试了758种生长条件。结果表明,该病原体能够代谢54.21%的测试碳源、86.84%的氮源、100%的硫源和98.31%的磷源。约37种碳化合物,包括D - 木糖、N - 乙酰 - D - 葡萄糖胺、D - 山梨醇、β - 甲基 - D - 葡萄糖苷、D - 半乳糖、L - 阿拉伯糖和D - 纤维二糖,显著支持该病原体的生长。PM 3显示了活性氮源,包括甘氨酰 - 天冬酰胺、丙氨酰 - 天冬氨酸、丙氨酰 - 谷氨酰胺和尿酸。PM 6 - 8显示了285条不同的氮途径,表明不同氨基酸的不同组合支持该病原体的生长。基因组测序结果表明,该病原体Y5菌株的原始数据组装后为2271 Mbp,N50值为10563 bp。一个50.3 Mb的基因组序列经过优化组装成53个重叠群,N50长度为1785794 bp,最大重叠群长度为3223184 bp,重叠群总长度为51182778 bp。使用非冗余数据库、基因本体数据库、直系同源簇数据库、京都基因与基因组百科全书数据库和SWISS - PROT数据库共预测出12680个蛋白质编码基因。该病原体的基因组序列和注释资源为研究其生物学特性、性状特异性基因、病原体 - 宿主相互作用、病原体进化和群体遗传多样性提供了参考。该病原体的表型组学和基因组将为深入了解微真菌生物学、病原体进化和流行病的遗传多样性提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b24/9846616/f9f87230c374/fmicb-13-1031023-g001.jpg

相似文献

1
Phenotypic analysis and genome sequence of strain Y5, the causal agent of tobacco pole rot.
Front Microbiol. 2023 Jan 4;13:1031023. doi: 10.3389/fmicb.2022.1031023. eCollection 2022.
2
Characteristics of as revealed by genomic and metabolic phenomic analysis, the causal agent of tobacco leaf spot.
Front Plant Sci. 2023 Aug 24;14:1199956. doi: 10.3389/fpls.2023.1199956. eCollection 2023.
3
Whole Genome Sequences of the Tea Leaf Spot Pathogen .
Phytopathology. 2019 Oct;109(10):1676-1678. doi: 10.1094/PHYTO-02-19-0050-A. Epub 2019 Aug 13.
5
Draft genome sequence data of Chen 4, the causal pathogen of deodar cedar root rot.
Data Brief. 2024 Sep 10;57:110930. doi: 10.1016/j.dib.2024.110930. eCollection 2024 Dec.
6
Analysis of growth dynamics in five different media and metabolic phenotypic characteristics of .
Front Microbiol. 2024 Jan 8;14:1301743. doi: 10.3389/fmicb.2023.1301743. eCollection 2023.
8
Fungal Composition and Diversity of the Tobacco Leaf Phyllosphere During Curing of Leaves.
Front Microbiol. 2020 Sep 4;11:554051. doi: 10.3389/fmicb.2020.554051. eCollection 2020.
9
Genome Sequence Resource for , the Cause of Grapevine Ripe Rot in China.
Mol Plant Microbe Interact. 2022 Jan;35(1):90-93. doi: 10.1094/MPMI-04-21-0077-A. Epub 2021 Dec 17.
10
Cloning and characterization of a gene rpg1 encoding polygalacturonase of Rhizopus oryzae.
Mycol Res. 2004 Dec;108(Pt 12):1407-14. doi: 10.1017/s0953756204001571.

引用本文的文献

1
Comparative Genomics of YLR001 Reveals Genetic Diversity and Probiotic Properties.
Microorganisms. 2024 Aug 10;12(8):1636. doi: 10.3390/microorganisms12081636.
2
Green control for inhibiting growth by stress factors in forage grass factory.
Front Microbiol. 2024 Aug 5;15:1437799. doi: 10.3389/fmicb.2024.1437799. eCollection 2024.
3
Analysis of growth dynamics in five different media and metabolic phenotypic characteristics of .
Front Microbiol. 2024 Jan 8;14:1301743. doi: 10.3389/fmicb.2023.1301743. eCollection 2023.
4
Characteristics of as revealed by genomic and metabolic phenomic analysis, the causal agent of tobacco leaf spot.
Front Plant Sci. 2023 Aug 24;14:1199956. doi: 10.3389/fpls.2023.1199956. eCollection 2023.

本文引用的文献

2
Fungal Composition and Diversity of the Tobacco Leaf Phyllosphere During Curing of Leaves.
Front Microbiol. 2020 Sep 4;11:554051. doi: 10.3389/fmicb.2020.554051. eCollection 2020.
3
4
Metabolic Phenotype Characterization of , the Causal Agent of Gray Mold.
Front Microbiol. 2018 Mar 13;9:470. doi: 10.3389/fmicb.2018.00470. eCollection 2018.
5
6
Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a () deletion.
NPJ Genom Med. 2018 Jan 22;3:3. doi: 10.1038/s41525-017-0042-3. eCollection 2018.
8
Rhizopus oryzae - Ancient microbial resource with importance in modern food industry.
Int J Food Microbiol. 2017 Sep 18;257:110-127. doi: 10.1016/j.ijfoodmicro.2017.06.012. Epub 2017 Jun 15.
9
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
10
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验