Li Yan, Wang Dengchao, Kvetny Maksim M, Brown Warren, Liu Juan, Wang Gangli
Department of Chemistry , Georgia State University , P.O. Box 3965, 50 Decatur St. SE , Atlanta , Georgia 30303 , USA . Email:
Chem Sci. 2015 Jan 1;6(1):588-595. doi: 10.1039/c4sc02195a. Epub 2014 Aug 20.
The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential (-) measurements and theoretical analyses. First, a unique non-zero - cross-point and pinched - curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.
纳米结构基底 - 溶液界面处的离子传输动力学在高密度能量转换、随机化学传感与生物传感、膜分离、纳米流体学以及基础纳米电化学中起着至关重要的作用。这些应用的进一步发展需要从根本上理解纳米尺度界面处的离子传输。目前对于动态或瞬态传输以及其中涉及的关键物理过程的理解有限,这与在原子和纳米尺度界面上广泛研究的稳态离子传输特征形成鲜明对比。在此,我们报告了在电流 - 电势( - )测量和理论分析中纳米尺度界面处显著的时间相关离子传输特性。首先,建立了独特的非零交叉点和收缩曲线作为特征,以表征通过单个锥形纳米吸管的离子传输动力学。其次,离子逆浓度梯度传输受外加电场和表面电场的调控。通过单个纳米吸管实现了离子泵送或分离的概念,即选择性地使离子逆浓度梯度传输。第三,在超级电容器类型的充放电过程中的纳米尺度能量转换以及化学和电能转换的背景下,讨论了在预定义盐度梯度下的这种动态离子传输过程。对新出现的电流 - 电势特征的分析为采用有序纳米结构的能量转换建立了迫切需要的物理基础。所阐明的机制和建立的方法可以推广到广义定义的纳米多孔材料和器件,以改善能量、分离和传感应用。