Oh Hyung-Suk, Nong Hong Nhan, Reier Tobias, Gliech Manuel, Strasser Peter
The Electrochemical Energy, Catalysis, and Materials Science Laboratory , Department of Chemistry , Chemical Engineering Division , Technical University Berlin , Berlin 10623 , Germany . Email:
Chem Sci. 2015 Jun 1;6(6):3321-3328. doi: 10.1039/c5sc00518c. Epub 2015 Mar 27.
Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.
在不影响催化活性和稳定性的前提下,降低酸性聚合物电解质膜(PEM)水电解槽中的贵金属催化剂含量,对于具有成本效益的氢基储能而言,是一个具有根本科学意义和重大技术重要性的目标。本研究展示了负载在锑掺杂氧化锡(ATO)上的纳米结构铱纳米枝晶(Ir-ND),作为PEM电解槽高效且稳定的析氢催化剂。与商业上最先进的Ir催化剂相比,活性Ir-ND结构表现出卓越的结构和形态特性,如粒径和表面积。负载在定制的耐腐蚀稳定导电氧化物上,Ir-ND催化剂与负载的Ir纳米颗粒相比,动力学析氢活性提高了2倍以上,催化活性比商业Ir黑高8倍以上。在单电池PEM电解槽测试中,Ir-ND/ATO在1.5 A cm²的技术电流密度下,仅在1.80 V的电池电压下,性能就比商业Ir催化剂高出2倍以上,同时在恒流条件下显示出优异的耐久性。我们得出结论,Ir-ND/ATO催化剂有潜力在理想的三电极装置和实际电解槽设备环境中,在保持催化性能的同时大幅降低所需的贵金属负载量。