Moss Genevieve C, Binninger Tobias, Rajan Ziba S H S, Itota Bamato J, Kooyman Patricia J, Susac Darija, Mohamed Rhiyaad
HySA/Catalysis Centre of Competence, Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Cape Town, 7701, South Africa.
Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
Small. 2025 May;21(20):e2412237. doi: 10.1002/smll.202412237. Epub 2025 Mar 30.
Iridium oxides are the state-of-the-art oxygen evolution reaction (OER) electrocatalysts in proton-exchange-membrane water electrolyzers (PEMWEs), but their high cost and scarcity necessitate improved utilization. Crystalline rutile-type iridium dioxide (IrO) offers superior stability under acidic OER conditions compared to amorphous iridium oxide (IrO). However, the higher synthesis temperatures required for crystalline phase formation result in lower OER activity due to the loss in active surface area. Herein, a novel perchlorate fusion-hydrothermal (PFHT) synthesis method to produce nano-crystalline rutile-type IrO with enhanced OER performance is presented. This low-temperature approach involves calcination at a mild temperature (300 °C) in the presence of a strong oxidizing agent, sodium perchlorate (NaClO), followed by hydrothermal treatment at 180 °C, yielding small (≈2 nm) rutile-type IrO nanoparticles with high mass-specific OER activity, achieving 95 A g at 1.525 V in ex situ glass-cell testing. Most importantly, the catalyst displays superior stability under harsh accelerated stress test conditions compared to commercial iridium oxides. The exceptional activity of the catalyst is confirmed with in situ PEMWE single-cell evaluations. This demonstrates that the PFHT synthesis method leverages the superior intrinsic properties of nano-crystalline IrO, effectively overcoming the typical trade-offs between OER activity and catalyst stability.
氧化铱是质子交换膜水电解槽(PEMWE)中最先进的析氧反应(OER)电催化剂,但其高成本和稀缺性使得提高其利用率成为必要。与非晶态氧化铱(IrO)相比,结晶金红石型二氧化铱(IrO₂)在酸性OER条件下具有更高的稳定性。然而,由于活性表面积的损失,结晶相形成所需的较高合成温度导致OER活性较低。在此,提出了一种新颖的高氯酸盐熔融-水热(PFHT)合成方法,用于制备具有增强OER性能的纳米晶金红石型IrO₂。这种低温方法包括在强氧化剂高氯酸钠(NaClO₄)存在下于温和温度(300°C)下煅烧,然后在180°C下水热处理,得到具有高质量比OER活性的小尺寸(≈2nm)金红石型IrO₂纳米颗粒,在非原位玻璃电池测试中在1.525V下实现了95A g⁻¹。最重要的是,与商业氧化铱相比,该催化剂在苛刻的加速应力测试条件下表现出优异的稳定性。通过原位PEMWE单电池评估证实了该催化剂的优异活性。这表明PFHT合成方法利用了纳米晶IrO₂的优异内在特性,有效地克服了OER活性与催化剂稳定性之间的典型权衡。