Suppr超能文献

核广义似然比检验在生物系统故障检测中的应用。

Kernel Generalized Likelihood Ratio Test for Fault Detection of Biological Systems.

出版信息

IEEE Trans Nanobioscience. 2018 Oct;17(4):498-506. doi: 10.1109/TNB.2018.2873243. Epub 2018 Oct 5.

Abstract

In this paper, we develop an improved fault detection (FD) technique in order to enhance the monitoring abilities of nonlinear biological processes. Generalized likelihood ratio test (GLRT)-based kernel principal component analysis (KPCA) (called also kernel GLRT) is an effective data-driven technique for monitoring nonlinear processes. However, it is well known that the data collected from complex and multivariate processes are multiscale due to the variety of changes that could occur in process with different localization in time and frequency. Thus, to enhance the process monitoring abilities, we propose to combine the advantages of kernel GLRT and multiscale representation using wavelets by developing a multiscale kernel GLRT (MS-KGLRT) detection chart. The proposed fault detection approach is addressed so that the KPCA is used to compute the model in the feature space and the MS-KGLRT chart is applied to detect the faults. The detection performance of the new chart is studied using two examples, one using synthetic data and the other using biological process representing a Cad System in E. Coli (CSEC) model for detecting small and moderate shifts (offset or bias and drift). The MS-KGLRT chart is used to enhance fault detection of the CSEC model through monitoring some of the key variables involved in this model such as enzymes, lysine, and cadaverine.

摘要

本文提出了一种改进的故障检测技术,旨在提高非线性生物过程的监测能力。基于广义似然比检验 (GLRT) 的核主成分分析 (KPCA)(也称为核 GLRT)是一种用于监测非线性过程的有效数据驱动技术。然而,众所周知,由于过程中可能发生的各种变化,从复杂和多变量过程中收集的数据具有多尺度性,这些变化在时间和频率上的定位不同。因此,为了提高过程监测能力,我们建议通过开发多尺度核 GLRT(MS-KGLRT)检测图来结合核 GLRT 和小波多尺度表示的优点。提出的故障检测方法是使用核主成分分析 (KPCA) 在特征空间中计算模型,然后应用 MS-KGLRT 图表来检测故障。使用两个示例研究了新图表的检测性能,一个示例使用合成数据,另一个示例使用生物过程表示大肠杆菌中的 Cad 系统 (CSEC) 模型,用于检测小幅度和中等幅度的偏移(偏移或偏差和漂移)。通过监测与该模型相关的一些关键变量,如酶、赖氨酸和尸胺,MS-KGLRT 图表用于增强 CSEC 模型的故障检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验