Suppr超能文献

混沌系统全局稳定和鲁棒同步的耦合条件。

Coupling conditions for globally stable and robust synchrony of chaotic systems.

机构信息

Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata 700090, India.

Department of Electronics, Asutosh College, Kolkata 700026, India.

出版信息

Phys Rev E. 2017 Jun;95(6-1):062204. doi: 10.1103/PhysRevE.95.062204. Epub 2017 Jun 9.

Abstract

We propose a set of general coupling conditions to select a coupling profile (a set of coupling matrices) from the linear flow matrix of dynamical systems for realizing global stability of complete synchronization (CS) in identical systems and robustness to parameter perturbation. The coupling matrices define the coupling links between any two oscillators in a network that consists of a conventional diffusive coupling link (self-coupling link) as well as a cross-coupling link. The addition of a selective cross-coupling link in particular plays constructive roles that ensure the global stability of synchrony and furthermore enables robustness of synchrony against small to nonsmall parameter perturbation. We elaborate the general conditions for the selection of coupling profiles for two coupled systems, three- and four-node network motifs analytically as well as numerically using benchmark models, the Lorenz system, the Hindmarsh-Rose neuron model, the Shimizu-Morioka laser model, the Rössler system, and a Sprott system. The role of the cross-coupling link is, particularly, exemplified with an example of a larger network, where it saves the network from a breakdown of synchrony against large parameter perturbation in any node. The perturbed node in the network transits from CS to generalized synchronization (GS) when all the other nodes remain in CS. The GS is manifested by an amplified response of the perturbed node in a coherent state.

摘要

我们提出了一组通用的耦合条件,用于从动力系统的线性流动矩阵中选择耦合轮廓(一组耦合矩阵),以实现同型系统的完全同步(CS)的全局稳定性和对参数扰动的鲁棒性。耦合矩阵定义了网络中任意两个振荡器之间的耦合链路,该网络由常规的扩散耦合链路(自耦合链路)以及交叉耦合链路组成。特别地,添加选择性交叉耦合链路可以起到建设性作用,从而确保同步的全局稳定性,并进一步使同步对小到非小的参数扰动具有鲁棒性。我们详细说明了为两个耦合系统、三节点和四节点网络模式选择耦合轮廓的一般条件,包括使用基准模型(Lorenz 系统、Hindmarsh-Rose 神经元模型、Shimizu-Morioka 激光模型、Rössler 系统和 Sprott 系统)进行的分析以及数值分析。交叉耦合链路的作用,特别是通过一个更大网络的示例来说明,它可以防止网络在任何节点的大参数扰动下失去同步。网络中的受扰节点在所有其他节点仍处于 CS 时,从 CS 过渡到广义同步(GS)。GS 的表现是受扰节点在相干态中响应放大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验