Suppr超能文献

流体与多孔层界面处输运现象的渐近建模:跳跃条件。

Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions.

机构信息

Aix-Marseille Université, Institut de Mathématiques de Marseille, UMR-CNRS 7373, Centrale Marseille, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France.

EM2C, UPR-CNRS 288, Ecole CentraleSupélec, Grande Voie des Vignes, 92295 Châtenay-Malabry, France.

出版信息

Phys Rev E. 2017 Jun;95(6-1):063302. doi: 10.1103/PhysRevE.95.063302. Epub 2017 Jun 8.

Abstract

We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ω_{fp} of the one-domain representation is very small compared to the macroscopic length scale L. The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O(d/L) with d/L≪1. The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ.

摘要

我们针对二维或三维粘性流体流动以及流体与多孔层界面处的对流传递开发了渐近建模。该渐近模型基于以下事实:单域表示的界面过渡区域Ω_{fp}的厚度 d 与宏观长度尺度 L 相比非常小。分析导致等效的双域表示,其中单域方法的过渡层中的输运现象通过在同质流体和多孔区域之间的虚构分界面Σ上的代数跳跃边界条件来表示。因此,这些跳跃条件在 O(d/L)中最多到一阶,其中 d/L≪1。该渐近模型的新颖性和相关性在于其通用性和多维性。实际上,证明了通过采用渐近模型的切向分量,为常用的 1D 剪切流推导的所有跳跃界面条件都可以得到恢复。在这种情况下,与文献中可用的不同模型进行比较,给出了有效跳跃系数的显式表达式及其相关标度。此外,对于多维流动,一般的渐近模型产生了跳跃条件的不同分量,包括Σ上的横流压力跳跃的新的特殊方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验