Liu Yong, Munteanu Cristian R, Fernandez-Lozano Carlos, Pazos Alejandro, Ran Tao, Tan Zhiliang, Yu Yizun, Zhou Chuanshe, Tang Shaoxun, González-Díaz Humberto
Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China.
RNASA-IMEDIR, Computer Science Faculty, University of A CorunaA Coruña, Spain.
Front Microbiol. 2017 Jun 30;8:1216. doi: 10.3389/fmicb.2017.01216. eCollection 2017.
The electrokinetic properties of the rumen microbiota are involved in cell surface adhesion and microbial metabolism. An study was carried out in batch culture to determine the effects of three levels of special surface area (SSA) of biomaterials and four levels of surface tension (ST) of culture medium on electrokinetic properties (Zeta potential, ξ; electrokinetic mobility, μ), fermentation parameters (volatile fatty acids, VFAs), and ST over fermentation processes (ST-a, γ). The obtained results were combined with previously published data (digestibility, D; pH; concentration of ammonia nitrogen, c(NH-N)) to establish a predictive artificial neural network (ANN) model. Concepts of dual-time series analysis, perturbation theory (PT), and Box-Jenkins Operators were applied for the first time to develop an ANN model to predict the variations of the electrokinetic properties of microbiota. The best dual-time series Radial Basis Functions (RBR) model for ξ of rumen microbiota predicted ξ for >30,000 cases with a correlation coefficient >0.8. This model provided insight into the correlations between electrokinetic property (zeta potential) of rumen microbiota and the perturbations of physical factors (specific surface area and surface tension) of media, digestibility of substrate, and their metabolites (NH-N, VFAs) in relation to environmental factors.
瘤胃微生物群的电动特性参与细胞表面粘附和微生物代谢。在分批培养中进行了一项研究,以确定生物材料的三个比表面积(SSA)水平和培养基的四个表面张力(ST)水平对电动特性(zeta电位,ξ;电动迁移率,μ)、发酵参数(挥发性脂肪酸,VFA)以及发酵过程中的表面张力(ST-a,γ)的影响。将获得的结果与先前发表的数据(消化率,D;pH;氨氮浓度,c(NH-N))相结合,建立了一个预测性人工神经网络(ANN)模型。首次应用双时间序列分析、微扰理论(PT)和Box-Jenkins算子来开发一个ANN模型,以预测微生物群电动特性的变化。瘤胃微生物群ξ的最佳双时间序列径向基函数(RBR)模型预测了超过30000个案例的ξ,相关系数>0.8。该模型深入了解了瘤胃微生物群的电动特性(zeta电位)与培养基的物理因素(比表面积和表面张力)的扰动、底物的消化率及其代谢产物(NH-N,VFA)与环境因素之间的相关性。