Suppr超能文献

结合自回归积分滑动平均模型(ARIMA)和神经网络的平滑策略,以改进交通事故预测。

Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

作者信息

Barba Lida, Rodríguez Nibaldo, Montt Cecilia

机构信息

Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile ; Universidad Nacional de Chimborazo, 33730880 Riobamba, Ecuador.

Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile.

出版信息

ScientificWorldJournal. 2014;2014:152375. doi: 10.1155/2014/152375. Epub 2014 Aug 28.

Abstract

Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.

摘要

提出了两种平滑策略,将其与自回归积分移动平均(ARIMA)和自回归神经网络(ANN)模型相结合,以改进时间序列预测。预测策略分两个阶段实施。在第一阶段,使用3点移动平均平滑或汉克尔矩阵的奇异值分解(HSVD)对时间序列进行平滑。在第二阶段,使用ARIMA模型和两个用于一步超前时间序列预测的人工神经网络。第一个人工神经网络的系数通过粒子群优化(PSO)学习算法估计,而第二个人工神经网络的系数通过弹性反向传播(RPROP)学习算法估计。使用智利瓦尔帕莱索地区2003年至2012年交通事故的每周时间序列对所提出的模型进行评估。最佳结果由HSVD-ARIMA组合给出,平均绝对百分比误差(MAPE)为0.26%,其次是MA-ARIMA,MAPE为1.12%;最差结果由基于PSO的MA-ANN给出,MAPE为15.51%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6af9/4163352/f9a2e4113063/TSWJ2014-152375.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验