Rahlfs Hinrich, Hüllebrand Markus, Schmitter Sebastian, Strecker Christoph, Harloff Andreas, Hennemuth Anja
Charité - Universitätsmedizin Berlin, Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany.
Fraunhofer MEVIS, Bremen, Germany.
J Med Imaging (Bellingham). 2024 Jul;11(4):044503. doi: 10.1117/1.JMI.11.4.044503. Epub 2024 Jul 12.
Atherosclerosis of the carotid artery is a major risk factor for stroke. Quantitative assessment of the carotid vessel wall can be based on cross-sections of three-dimensional (3D) black-blood magnetic resonance imaging (MRI). To increase reproducibility, a reliable automatic segmentation in these cross-sections is essential.
We propose an automatic segmentation of the carotid artery in cross-sections perpendicular to the centerline to make the segmentation invariant to the image plane orientation and allow a correct assessment of the vessel wall thickness (VWT). We trained a residual U-Net on eight sparsely sampled cross-sections per carotid artery and evaluated if the model can segment areas that are not represented in the training data. We used 218 MRI datasets of 121 subjects that show hypertension and plaque in the ICA or CCA measuring in ultrasound.
The model achieves a high mean Dice coefficient of 0.948/0.859 for the vessel's lumen/wall, a low mean Hausdorff distance of , and a low mean average contour distance of on the test set. The model reaches similar results for regions of the carotid artery that are not incorporated in the training set and on MRI of young, healthy subjects. The model also achieves a low median Hausdorff distance of on the 2021 Carotid Artery Vessel Wall Segmentation Challenge test set.
The proposed method can reduce the effort for carotid artery vessel wall assessment. Together with human supervision, it can be used for clinical applications, as it allows a reliable measurement of the VWT for different patient demographics and MRI acquisition settings.
颈动脉粥样硬化是中风的主要危险因素。颈动脉血管壁的定量评估可基于三维(3D)黑血磁共振成像(MRI)的横截面。为提高可重复性,在这些横截面中进行可靠的自动分割至关重要。
我们提出在垂直于中心线的横截面中对颈动脉进行自动分割,以使分割对图像平面方向不变,并能正确评估血管壁厚度(VWT)。我们在每条颈动脉的八个稀疏采样横截面上训练了一个残差U-Net,并评估该模型是否能分割训练数据中未出现的区域。我们使用了121名受试者的218个MRI数据集,这些受试者在超声检查中显示颈内动脉(ICA)或颈总动脉(CCA)有高血压和斑块。
在测试集上,该模型对血管腔/壁的平均骰子系数高达0.948/0.859,平均豪斯多夫距离较低,平均平均轮廓距离较低。该模型在未纳入训练集的颈动脉区域以及年轻健康受试者的MRI上也能得到类似结果。该模型在2021年颈动脉血管壁分割挑战赛测试集上的中位豪斯多夫距离也较低。
所提出的方法可以减少颈动脉血管壁评估的工作量。与人工监督相结合,它可用于临床应用,因为它能对不同患者群体和MRI采集设置可靠地测量VWT。