Suppr超能文献

大 GABA:24 个研究点的编辑性磁共振波谱分析。

Big GABA: Edited MR spectroscopy at 24 research sites.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Radiology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.

出版信息

Neuroimage. 2017 Oct 1;159:32-45. doi: 10.1016/j.neuroimage.2017.07.021. Epub 2017 Jul 14.

Abstract

Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.

摘要

磁共振波谱(MRS)是唯一一种能够无创地检测人脑内神经递质γ-氨基丁酸(GABA)内源性信号的生物医学成像方法。其在硬件和采集方法方面的改进,以及更广泛地使用能够选择性检测 GABA 的脉冲序列(特别是 J 差谱编辑序列),使其越来越受欢迎。然而,GABA 编辑 MRS 的实施在研究地点之间仍然存在差异,使得研究之间的比较具有挑战性。这项大规模的多供应商、多地点研究旨在更好地了解影响 GABA 编辑 MRS 测量结果的因素。成立了一个由 24 个研究地点组成的国际联盟。来自三大 MRI 供应商的扫描仪采集了 272 名健康成年人的数据,并使用 Gannet 处理管道进行了分析。MRS 数据是在中顶叶用标准的 GABA+和大分子(MM)抑制 GABA 编辑采集的。整个队列中 GABA+测量的变异系数为 12%,MM 抑制 GABA 测量的变异系数为 28%。多层次分析显示,GABA+数据的大部分方差(72%)归因于参与者在站点内的差异,而站点水平的差异比供应商水平的差异(8%)更能解释更多的方差(20%)。对于 MM 抑制 GABA 数据,方差在站点(50%)和参与者(50%)差异之间平均分布。研究结果表明,采用标准方案时,GABA+测量具有很强的一致性。然而,对于 MM 抑制 GABA 测量,由于站点间数据采集的差异,其可变性增加。本研究的方案为 GABA 编辑 MRS 的未来方法标准化建立了框架,同时为 MRS 社区提供了有价值的基准。

相似文献

1
Big GABA: Edited MR spectroscopy at 24 research sites.
Neuroimage. 2017 Oct 1;159:32-45. doi: 10.1016/j.neuroimage.2017.07.021. Epub 2017 Jul 14.
2
Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites.
Neuroimage. 2019 May 1;191:537-548. doi: 10.1016/j.neuroimage.2019.02.059. Epub 2019 Mar 3.
3
Multi-vendor standardized sequence for edited magnetic resonance spectroscopy.
Neuroimage. 2019 Apr 1;189:425-431. doi: 10.1016/j.neuroimage.2019.01.056. Epub 2019 Jan 22.
4
Impact of acquisition and modeling parameters on the test-retest reproducibility of edited GABA.
NMR Biomed. 2024 Apr;37(4):e5076. doi: 10.1002/nbm.5076. Epub 2023 Dec 13.
5
Prospective frequency and motion correction for edited H magnetic resonance spectroscopy.
Neuroimage. 2021 Jun;233:117922. doi: 10.1016/j.neuroimage.2021.117922. Epub 2021 Mar 1.
6
Harmonization of multi-site MRS data with ComBat.
Neuroimage. 2022 Aug 15;257:119330. doi: 10.1016/j.neuroimage.2022.119330. Epub 2022 May 24.
7
Hadamard editing of glutathione and macromolecule-suppressed GABA.
NMR Biomed. 2018 Jan;31(1). doi: 10.1002/nbm.3844. Epub 2017 Oct 26.
8
J-difference-edited MRS measures of γ-aminobutyric acid before and after acute caffeine administration.
Magn Reson Med. 2018 Dec;80(6):2356-2365. doi: 10.1002/mrm.27233. Epub 2018 May 12.
9

引用本文的文献

1
GABA levels decline with age: A longitudinal study.
Imaging Neurosci (Camb). 2024 Jul 15;2. doi: 10.1162/imag_a_00224. eCollection 2024.
2
MRS-BIDS, an extension to the Brain Imaging Data Structure for magnetic resonance spectroscopy.
Sci Data. 2025 Aug 8;12(1):1384. doi: 10.1038/s41597-025-05543-2.
3
Identifying out-of-voxel echoes in edited MRS with phase cycle inversion.
bioRxiv. 2025 Jun 29:2025.06.26.661810. doi: 10.1101/2025.06.26.661810.
4
Noise decorrelation coil combination optimizes SNR of edited H MRS data.
Magn Reson Imaging. 2025 Oct;122:110452. doi: 10.1016/j.mri.2025.110452. Epub 2025 Jul 1.
5
GABA and Glx levels in cortico-subcortical networks predict catecholaminergic effects on response inhibition.
J Psychopharmacol. 2025 Jun 20:2698811251340893. doi: 10.1177/02698811251340893.
8
"Surviving and Thriving": evidence for cortical GABA stabilization in cognitively-intact oldest-old adults.
Transl Psychiatry. 2025 Mar 13;15(1):79. doi: 10.1038/s41398-025-03302-w.

本文引用的文献

1
Simultaneous measurement of Aspartate, NAA, and NAAG using HERMES spectral editing at 3 Tesla.
Neuroimage. 2017 Jul 15;155:587-593. doi: 10.1016/j.neuroimage.2017.04.043. Epub 2017 Apr 21.
2
Within- and between-session reproducibility of GABA measurements with MR spectroscopy.
J Magn Reson Imaging. 2017 Aug;46(2):421-430. doi: 10.1002/jmri.25588. Epub 2017 Feb 15.
3
Individual Differences in Resting Corticospinal Excitability Are Correlated with Reaction Time and GABA Content in Motor Cortex.
J Neurosci. 2017 Mar 8;37(10):2686-2696. doi: 10.1523/JNEUROSCI.3129-16.2017. Epub 2017 Feb 8.
4
Edited H magnetic resonance spectroscopy in vivo: Methods and metabolites.
Magn Reson Med. 2017 Apr;77(4):1377-1389. doi: 10.1002/mrm.26619. Epub 2017 Feb 2.
5
Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant.
Nat Neurosci. 2017 Mar;20(3):470-475. doi: 10.1038/nn.4490. Epub 2017 Jan 30.
6
Spatial Hadamard encoding of J-edited spectroscopy using slice-selective editing pulses.
NMR Biomed. 2017 May;30(5). doi: 10.1002/nbm.3688. Epub 2017 Jan 27.
7
1D-spectral editing and 2D multispectral in vivoH-MRS and H-MRSI - Methods and applications.
Anal Biochem. 2017 Jul 15;529:48-64. doi: 10.1016/j.ab.2016.12.020. Epub 2016 Dec 26.
8
MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial.
J Magn Reson Imaging. 2017 Jul;46(1):290-302. doi: 10.1002/jmri.25560. Epub 2016 Dec 16.
9
Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.
J Neurosci. 2016 Nov 16;36(46):11788-11794. doi: 10.1523/JNEUROSCI.1970-16.2016.
10
Dual-volume excitation and parallel reconstruction for J-difference-edited MR spectroscopy.
Magn Reson Med. 2017 Jan;77(1):16-22. doi: 10.1002/mrm.26536. Epub 2016 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验